Randomiserede måleprotokoller for gittermålteorier

Randomiserede måleprotokoller for gittermålteorier

Jacob Bringewatt1,2, Jonathan Kunjummen1,2, og Niklas Mueller3

1Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
2Joint Quantum Institute/NIST, University of Maryland, College Park, Maryland 20742, USA
3InQubator for Quantum Simulation (IQuS), Institut for Fysik, University of Washington, Seattle, WA 98195, USA.

Finder du denne artikel interessant eller vil du diskutere? Scite eller efterlade en kommentar på SciRate.

Abstrakt

Randomiserede måleprotokoller, herunder klassiske skygger, sammenfiltringstomografi og randomiseret benchmarking er kraftfulde teknikker til at estimere observerbare, udføre tilstandstomografi eller udtrække sammenfiltringsegenskaberne af kvantetilstande. Selvom det generelt er vanskeligt og ressourcekrævende at optrevle den indviklede struktur af kvantetilstande, er kvantesystemer i naturen ofte tæt begrænset af symmetrier. Dette kan udnyttes af de symmetribevidste randomiserede måleskemaer, vi foreslår, hvilket giver klare fordele i forhold til symmetri-blind randomisering, såsom reduktion af måleomkostninger, muliggør symmetribaseret fejlreduktion i eksperimenter, hvilket muliggør differentieret måling af (gitter) gauge teoriens sammenfiltringsstruktur, og potentielt verifikation af topologisk ordnede tilstande i eksisterende og nærgående eksperimenter. Det er afgørende, i modsætning til symmetri-blinde randomiserede måleprotokoller, at disse sidstnævnte opgaver kan udføres uden at genindlære symmetrier via fuld rekonstruktion af tæthedsmatricen.

En kvantetilstand kan kode for eksponentiel information. Kun en minimal mængde af denne information afsløres typisk ved en enkelt måling. Randomiserede måleprotokoller tilbyder en lovende vej til at overvinde denne begrænsning, hvilket giver adgang til mange mængder af interesse, mens de kræver relativt få målinger. I dette arbejde foreslår vi at forbedre den randomiserede måleværktøjskasse ved at gøre brug af en allestedsnærværende situation i konstruerede og naturlige kvantesystemer, tilstedeværelsen af ​​symmetrier. Vores symmetri-bevidste tilgang giver en direkte metode til at udtrække sammenfiltringsstrukturen af ​​kvante-mange kropssystemer uden behov for fuld tomografi. En primær applikation er studiet og verifikationen af ​​topologisk ordnede faser i syntetiske kvantematerialer, et skridt i retning af at muliggøre fejltolerant kvanteinformationsbehandling eller måling af sammenfiltringsstrukturen af ​​måleteorier i kvantesimuleringseksperimenter.

► BibTeX-data

► Referencer

[1] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, PJ Love, A. Aspuru-Guzik og JL O'Brien, Nat. Commun. 5, 1 (2014).
https://​/​doi.org/​10.1038/​ncomms5213

[2] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, JM Chow og JM Gambetta, Nature 549, 242 (2017).
https://​/​doi.org/​10.1038/​nature23879

[3] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, MK Joshi, P. Jurcevic, CA Muschik, P. Silvi, R. Blatt, CF Roos, et al., Nature 569, 355 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1177-4

[4] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, GH Booth, et al., Phys. Rep. 986, 1 (2022).
https://​/​doi.org/​10.1016/​j.physrep.2022.08.003

[5] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud og E. Kashefi, Nat. Rev. Phys. 2, 382 (2020).
https:/​/​doi.org/​10.1038/​s42254-020-0186-4

[6] N. Friis, G. Vitagliano, M. Malik og M. Huber, Nat. Rev. Phys. 1, 72 (2019).
https:/​/​doi.org/​10.1038/​s42254-018-0003-5

[7] E. Knill, D. Leibfried, R. Reichle, J. Britton, RB Blakestad, JD Jost, C. Langer, R. Ozeri, S. Seidelin og DJ Wineland, Phys. Rev. A 77, 012307 (2008).
https://​/​doi.org/​10.1103/​PhysRevA.77.012307

[8] M. Paini og A. Kalev, arXiv preprint arXiv:1910.10543 (2019).
https://​/​doi.org/​10.48550/​arXiv.1910.10543
arXiv: 1910.10543

[9] H.-Y. Huang, R. Kueng og J. Preskill, Nat. Phys. 16, 1050 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0932-7

[10] H.-Y. Huang, R. Kueng og J. Preskill, Phys. Rev. Lett. 127, 030503 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.127.030503

[11] H.-Y. Hu, S. Choi og Y.-Z. Dig, fys. Rev. Res. 5, 023027 (2023).
https://​/​doi.org/​10.1103/​PhysRevResearch.5.023027

[12] A. Zhao, NC Rubin og A. Miyake, Phys. Rev. Lett. 127, 110504 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.127.110504

[13] J. Kunjummen, MC Tran, D. Carney og JM Taylor, Phys. Rev. A 107, 042403 (2023).
https://​/​doi.org/​10.1103/​PhysRevA.107.042403

[14] R. Levy, D. Luo og BK Clark, Phys. Rev. Res. 6, 013029 (2024).
https://​/​doi.org/​10.1103/​PhysRevResearch.6.013029

[15] J. Helsen, M. Ioannou, J. Kitzinger, E. Onorati, A. Werner, J. Eisert og I. Roth, Nat. Comm. 14, 5039 (2023).
https:/​/​doi.org/​10.1038/​s41467-023-39382-9

[16] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, et al., Science 376, 1182 (2022).
https://​doi.org/​10.1126/​science.abn7293

[17] G. Hao Low, arXiv preprint arXiv:2208.08964 (2022).
https://​/​doi.org/​10.48550/​arXiv.2208.08964
arXiv: 2208.08964

[18] H.-Y. Huang, Nat. Rev. Phys. 4 (2022).
https:/​/​doi.org/​10.1038/​s42254-021-00411-5

[19] H. Pichler, G. Zhu, A. Seif, P. Zoller og M. Hafezi, Phys. Rev. X 6, 041033 (2016).
https://​/​doi.org/​10.1103/​PhysRevX.6.041033

[20] M. Dalmonte, B. Vermersch og P. Zoller, Nat. Phys. 14, 827 (2018).
https:/​/​doi.org/​10.1038/​s41567-018-0151-7

[21] A. Elben, B. Vermersch, M. Dalmonte, JI Cirac og P. Zoller, Phys. Rev. Lett. 120, 050406 (2018).
https://​/​doi.org/​10.1103/​PhysRevLett.120.050406

[22] B. Vermersch, A. Elben, M. Dalmonte, JI Cirac og P. Zoller, Phys. Rev. A 97, 023604 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.97.023604

[23] A. Elben, B. Vermersch, CF Roos og P. Zoller, Phys. Rev. A 99, 052323 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.99.052323

[24] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, BP Lanyon, P. Zoller, R. Blatt og CF Roos, Science 364, 260 (2019).
https://​doi.org/​10.1126/​science.aau4963

[25] A. Elben, R. Kueng, H.-YR Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller, et al., Phys. Rev. Lett. 125, 200501 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.200501

[26] Y. Zhou, P. Zeng og Z. Liu, Phys. Rev. Lett. 125, 200502 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.200502

[27] A. Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M. Dalmonte, P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, et al., npj Quantum Inf. 7, 1 (2021).
https://​/​doi.org/​10.1038/​s41534-021-00487-y

[28] C. Kokail, R. van Bijnen, A. Elben, B. Vermersch og P. Zoller, Nat. Phys. 17, 936 (2021a).
https://​/​doi.org/​10.1038/​s41567-021-01260-w

[29] A. Rath, R. van Bijnen, A. Elben, P. Zoller og B. Vermersch, Phys. Rev. Lett. 127, 200503 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.127.200503

[30] C. Kokail, B. Sundar, TV Zache, A. Elben, B. Vermersch, M. Dalmonte, R. van Bijnen og P. Zoller, Phys. Rev. Lett. 127, 170501 (2021b).
https://​/​doi.org/​10.1103/​PhysRevLett.127.170501

[31] A. Elben, ST Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. Vermersch og P. Zoller, Nat. Rev. Phys. 5, 9 (2023).
https:/​/​doi.org/​10.1038/​s42254-022-00535-2

[32] TV Zache, C. Kokail, B. Sundar og P. Zoller, Quantum 6, 702 (2022).
https:/​/​doi.org/​10.22331/​q-2022-04-27-702

[33] SJ van Enk og CW Beenakker, Phys. Rev. Lett. 108, 110503 (2012a).
https://​/​doi.org/​10.1103/​PhysRevLett.108.110503

[34] ST Flammia, D. Gross, Y.-K. Liu og J. Eisert, New J. Phys. 14, 095022 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​9/​095022

[35] J. Haah, AW Harrow, Z. Ji, X. Wu og N. Yu, i Proceedings of the 2016. årlige ACM symposium on Theory of Computing (913) s. 925-XNUMX.
https://​/​doi.org/​10.1145/​2897518.2897585

[36] R. O'Donnell og J. Wright, i Proceedings of the 2016. årlige ACM symposium on Theory of Computing (899) s. 912-XNUMX.
https://​/​doi.org/​10.1145/​2897518.2897544

[37] S. Chen, W. Yu, P. Zeng og ST Flammia, PRX Quantum 2, 030348 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.030348

[38] DE Koh og S. Grewal, Quantum 6, 776 (2022).
https:/​/​doi.org/​10.22331/​q-2022-08-16-776

[39] MC Tran, DK Mark, WW Ho og S. Choi, arXiv preprint arXiv:2212.02517 (2022).
https://​/​doi.org/​10.48550/​arXiv.2212.02517
arXiv: 2212.02517

[40] R. Blatt og CF Roos, Nat. Phys. 8, 277 (2012).
https://doi.org/​10.1038/​nphys2252

[41] I. Bloch, J. Dalibard og S. Nascimbene, Nat. Phys. 8, 267 (2012).
https://doi.org/​10.1038/​nphys2259

[42] C. Gross og I. Bloch, Science 357, 995 (2017).
https://​doi.org/​10.1126/​science.aal3837

[43] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu og Y. Takahashi, Nat. Rev. Phys. 2, 411 (2020).
https:/​/​doi.org/​10.1038/​s42254-020-0195-3

[44] L. Bassman, M. Urbanek, M. Metcalf, J. Carter, AF Kemper og WA de Jong, Quantum Sci. Teknol. 6, 043002 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac1ca6

[45] C. Monroe, WC Campbell, L.-M. Duan, Z.-X. Gong, AV Gorshkov, P. Hess, R. Islam, K. Kim, NM Linke, G. Pagano, et al., Rev. Mod. Phys. 93, 025001 (2021).
https://​/​doi.org/​10.1103/​RevModPhys.93.025001

[46] AJ Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer og P. Zoller, Nature 607, 667 (2022).
https:/​/​doi.org/​10.1038/​s41586-022-04940-6

[47] JM Deutsch, Phys. Rev. A 43, 2046 (1991).
https://​/​doi.org/​10.1103/​PhysRevA.43.2046

[48] M. Srednicki, Phys. Rev. E 50, 888 (1994).
https://​/​doi.org/​10.1103/​PhysRevE.50.888

[49] M. Rigol, V. Dunjko og M. Olshanii, Nature 452, 854 (2008).
https://​/​doi.org/​10.1038/​nature06838

[50] JM Deutsch, H. Li og A. Sharma, Phys. Rev. E 87, 042135 (2013).
https://​/​doi.org/​10.1103/​PhysRevE.87.042135

[51] V. Khemani, A. Chandran, H. Kim og SL Sondhi, Phys. Rev. E 90, 052133 (2014).
https://​/​doi.org/​10.1103/​PhysRevE.90.052133

[52] J. Eisert, M. Friesdorf og C. Gogolin, Nat. Phys. 11, 124 (2015).
https://doi.org/​10.1038/​nphys3215

[53] AM Kaufman, ME Tai, A. Lukin, M. Rispoli, R. Schittko, PM Preiss og M. Greiner, Science 353, 794 (2016).
https://​doi.org/​10.1126/​science.aaf6725

[54] J. Berges, MP Heller, A. Mazeliauskas og R. Venugopalan, Rev. Mod. Phys. 93, 035003 (2021).
https://​/​doi.org/​10.1103/​RevModPhys.93.035003

[55] Z.-Y. Zhou, G.-X. Su, JC Halimeh, R. Ott, H. Sun, P. Hauke, B. Yang, Z.-S. Yuan, J. Berges og J.-W. Pan, Science 377, 311 (2022).
https://​doi.org/​10.1126/​science.abl6277

[56] N. Mueller, TV Zache og R. Ott, Phys. Rev. Lett. 129, 011601 (2022).
https://​/​doi.org/​10.1103/​PhysRevLett.129.011601

[57] T.-C. Lu og T. Grover, Phys. Rev. Research 2, 043345 (2020).
https://​/​doi.org/​10.1103/​PhysRevResearch.2.043345

[58] M. Brenes, S. Pappalardi, J. Goold og A. Silva, Phys. Rev. Lett. 124, 040605 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.124.040605

[59] A. Osterloh, L. Amico, G. Falci og R. Fazio, Nature 416, 608 (2002).
https://​/​doi.org/​10.1038/​416608a

[60] G. Vidal, JI Latorre, E. Rico og A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).
https://​/​doi.org/​10.1103/​PhysRevLett.90.227902

[61] F. Verstraete, M. Popp og JI Cirac, Phys. Rev. Lett. 92, 027901 (2004).
https://​/​doi.org/​10.1103/​PhysRevLett.92.027901

[62] G. Costantini, P. Facchi, G. Florio og S. Pascazio, J. Phys. A: Matematik. Theor. 40, 8009 (2007).
https:/​/​doi.org/​10.1088/​1751-8113/​40/​28/​S10

[63] H. Li og FDM Haldane, Phys. Rev. Lett. 101, 010504 (2008).
https://​/​doi.org/​10.1103/​PhysRevLett.101.010504

[64] T. Byrnes og Y. Yamamoto, Phys. Rev. A 73, 022328 (2006).
https://​/​doi.org/​10.1103/​PhysRevA.73.022328

[65] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U.-J. Wiese og P. Zoller, Phys. Rev. Lett. 109, 175302 (2012).
https://​/​doi.org/​10.1103/​PhysRevLett.109.175302

[66] E. Zohar, JI Cirac og B. Reznik, Phys. Rev. Lett. 110, 055302 (2013a).
https://​/​doi.org/​10.1103/​PhysRevLett.110.055302

[67] E. Zohar, JI Cirac og B. Reznik, Phys. Rev. A 88, 023617 (2013b).
https://​/​doi.org/​10.1103/​PhysRevA.88.023617

[68] E. Zohar, JI Cirac og B. Reznik, Phys. Rev. Lett. 110, 125304 (2013c).
https://​/​doi.org/​10.1103/​PhysRevLett.110.125304

[69] L. Tagliacozzo, A. Celi, P. Orland, M. Mitchell og M. Lewenstein, Nat. Commun. 4, 1 (2013).
https://​/​doi.org/​10.1038/​ncomms3615

[70] E. Zohar, JI Cirac og B. Reznik, Rep. Prog. Phys. 79, 014401 (2015).
https:/​/​doi.org/​10.1088/​0034-4885/​79/​1/​014401

[71] EA Martinez, CA Muschik, P. Schindler, D. Nigg, A. Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P. Zoller, et al., Nature 534, 516 (2016).
https://​/​doi.org/​10.1038/​nature18318

[72] D. Yang, GS Giri, M. Johanning, C. Wunderlich, P. Zoller og P. Hauke, Phys. Rev. A 94, 052321 (2016).
https://​/​doi.org/​10.1103/​PhysRevA.94.052321

[73] TV Zache, F. Hebenstreit, F. Jendrzejewski, M. Oberthaler, J. Berges og P. Hauke, Quantum Sci. Teknol. (2018).
https://​/​doi.org/​10.1088/​2058-9565/​aac33b

[74] N. Klco, EF Dumitrescu, AJ McCaskey, TD Morris, RC Pooser, M. Sanz, E. Solano, P. Lougovski og MJ Savage, Phys. Rev. A 98, 032331 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.98.032331

[75] H.-H. Lu, N. Klco, JM Lukens, TD Morris, A. Bansal, A. Ekström, G. Hagen, T. Papenbrock, AM Weiner, MJ Savage og P. Lougovski, Phys. Rev. A 100, 012320 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.100.012320

[76] L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N. Goldman og F. Grusdt, Sci. Adv. 5, eaav7444 (2019).
https://​/​doi.org/​10.1126/​sciadv.aav7444

[77] H. Lamm, S. Lawrence, Y. Yamauchi, N. Collaboration, et al., Phys. Rev. D 100, 034518 (2019).
https://​/​doi.org/​10.1103/​PhysRevD.100.034518

[78] Z. Davoudi, M. Hafezi, C. Monroe, G. Pagano, A. Seif og A. Shaw, Phys. Rev. Research 2, 023015 (2020).
https://​/​doi.org/​10.1103/​PhysRevResearch.2.023015

[79] FM Surace, PP Mazza, G. Giudici, A. Lerose, A. Gambassi og M. Dalmonte, Phys. Rev. X 10, 021041 (2020).
https://​/​doi.org/​10.1103/​PhysRevX.10.021041

[80] D. Luo, J. Shen, M. Highman, BK Clark, B. DeMarco, AX El-Khadra og B. Gadway, Phys. Rev. A 102, 032617 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.032617

[81] MC Banuls, R. Blatt, J. Catani, A. Celi, JI Cirac, M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S. Montangero, et al., Eur. Phys. J. D 74, 1 (2020).
https://​/​doi.org/​10.1140/​epjd/​e2020-100571-8

[82] A. Mil, TV Zache, A. Hegde, A. Xia, RP Bhatt, MK Oberthaler, P. Hauke, J. Berges og F. Jendrzejewski, Science 367, 1128 (2020).
https://​doi.org/​10.1126/​science.aaz5312

[83] D. Paulson, L. Dellantonio, JF Haase, A. Celi, A. Kan, A. Jena, C. Kokail, R. van Bijnen, K. Jansen, P. Zoller og CA Muschik, PRX Quantum 2, 030334 ( 2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.030334

[84] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi og A. Tomiya, arXiv:2001.00485 (2020).
https://​/​doi.org/​10.48550/​arXiv.2001.00485
arXiv: 2001.00485

[85] AF Shaw, P. Lougovski, JR Stryker og N. Wiebe, Quantum 4, 306 (2020).
https:/​/​doi.org/​10.22331/​q-2020-08-10-306

[86] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, FV Pepe og E. Ercolessi, Quantum 4, 281 (2020).
https:/​/​doi.org/​10.22331/​q-2020-06-15-281

[87] N. Klco, MJ Savage og JR Stryker, Phys. Rev. D 101, 074512 (2020).
https://​/​doi.org/​10.1103/​PhysRevD.101.074512

[88] N. Klco, A. Roggero og MJ Savage, Rept. Prog. Phys. 85, 064301 (2022), arXiv:2107.04769 [quant-ph].
https:/​/​doi.org/​10.1088/​1361-6633/​ac58a4
arXiv: 2107.04769

[89] L. Homeier, C. Schweizer, M. Aidelsburger, A. Fedorov og F. Grusdt, Phys. Rev. B 104, 085138 (2021).
https://​/​doi.org/​10.1103/​PhysRevB.104.085138

[90] G. Pederiva, A. Bazavov, B. Henke, L. Hostetler, D. Lee, H.-W. Lin og A. Shindler, i 38th International Symposium on Lattice Field Theory (2021).
https://​/​doi.org/​10.48550/​arXiv.2109.11859

[91] A. Rajput, A. Roggero og N. Wiebe, Quantum 6, 780 (2022).
https:/​/​doi.org/​10.22331/​q-2022-08-17-780

[92] NH Nguyen, MC Tran, Y. Zhu, AM Green, CH Alderete, Z. Davoudi og NM Linke, PRX Quantum 3, 020324 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.020324

[93] WA de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer og X. Yao, Phys. Rev. D 106, 054508 (2022).
https://​/​doi.org/​10.1103/​PhysRevD.106.054508

[94] S. A. Rahman, R. Lewis, E. Mendicelli og S. Powell, Phys. Rev. D 104, 034501 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.104.034501

[95] JF Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan, K. Jansen og CA Muschik, Quantum 5, 393 (2021).
https:/​/​doi.org/​10.22331/​q-2021-02-04-393

[96] A. Kan og Y. Nam, arXiv:2107.12769 (2021).
https://​/​doi.org/​10.48550/​arXiv.2107.12769
arXiv: 2107.12769

[97] Z. Davoudi, I. Raychowdhury og A. Shaw, Phys. Rev. D 104, 074505 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.104.074505

[98] A. Ciavarella, N. Klco og MJ Savage, Phys. Rev. D 103, 094501 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.103.094501

[99] MS Alam, S. Hadfield, H. Lamm og ACY Li, arXiv:2108.13305 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.105.114501
arXiv: 2108.13305

[100] AN Ciavarella og IA Chernyshev, Phys. Rev. D 105, 074504 (2022).
https://​/​doi.org/​10.1103/​PhysRevD.105.074504

[101] TD Cohen, H. Lamm, S. Lawrence og Y. Yamauchi (NuQS Collaboration), Phys. Rev. D 104, 094514 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.104.094514

[102] D. González-Cuadra, TV Zache, J. Carrasco, B. Kraus og P. Zoller, Phys. Rev. Lett. 129, 160501 (2022).
https://​/​doi.org/​10.1103/​PhysRevLett.129.160501

[103] JC Halimeh, H. Lang og P. Hauke, New J. Phys. 24, 033015 (2022).
https://​/​doi.org/​10.1088/​1367-2630/​ac5564

[104] B. Andrade, Z. Davoudi, T. Graß, M. Hafezi, G. Pagano og A. Seif, Quantum Sci. Teknol. 7, 034001 (2022).
https:/​/​doi.org/​10.1088/​2058-9565/​ac5f5b

[105] YY Atas, JF Haase, J. Zhang, V. Wei, SM-L. Pfaendler, R. Lewis og CA Muschik, arXiv preprint arXiv:2207.03473 (2022).
https://​/​doi.org/​10.48550/​arXiv.2207.03473
arXiv: 2207.03473

[106] RC Farrell, IA Chernyshev, SJ Powell, NA Zemlevskiy, M. Illa og MJ Savage, arXiv preprint arXiv:2207.01731 (2022).
https://​/​doi.org/​10.48550/​arXiv.2207.01731
arXiv: 2207.01731

[107] EM Murairi, MJ Cervia, H. Kumar, PF Bedaque og A. Alexandru, Phys. Rev. D 106, 094504 (2022).
https://​/​doi.org/​10.1103/​PhysRevD.106.094504

[108] G. Clemente, A. Crippa og K. Jansen, Phys. Rev. D 106, 114511 (2022).
https://​/​doi.org/​10.1103/​PhysRevD.106.114511

[109] CW Bauer, Z. Davoudi, AB Balantekin, T. Bhattacharya, M. Carena, WA de Jong, P. Draper, A. El-Khadra, N. Gemelke, M. Hanada, D. Kharzeev, H. Lamm, Y. -Y. Li, J. Liu, M. Lukin, Y. Meurice, C. Monroe, B. Nachman, G. Pagano, J. Preskill, E. Rinaldi, A. Roggero, DI Santiago, MJ Savage, I. Siddiqi, G. Siopsis, D. Van Zanten, N. Wiebe, Y. Yamauchi, K. Yeter-Aydeniz og S. Zorzetti, PRX Quantum 4, 027001 (2023).
https://​/​doi.org/​10.1103/​PRXQuantum.4.027001

[110] N. Mueller, JA Carolan, A. Connelly, Z. Davoudi, EF Dumitrescu og K. Yeter-Aydeniz, PRX Quantum 4, 030323 (2023).
https://​/​doi.org/​10.1103/​PRXQuantum.4.030323

[111] Z. Davoudi, N. Mueller og C. Powers, Phys. Rev. Lett. 131, 081901 (2023).
https://​/​doi.org/​10.1103/​PhysRevLett.131.081901

[112] C. Kane, DM Grabowska, B. Nachman og CW Bauer, arXiv preprint arXiv:2211.10497 (2022).
https://​/​doi.org/​10.48550/​arXiv.2211.10497
arXiv: 2211.10497

[113] J. Mildenberger, W. Mruczkiewicz, JC Halimeh, Z. Jiang og P. Hauke, arXiv preprint arXiv:2203.08905 (2022).
https://​/​doi.org/​10.48550/​arXiv.2203.08905
arXiv: 2203.08905

[114] EJ Gustafson og H. Lamm, arXiv preprint arXiv:2301.10207 (2023).
https://​/​doi.org/​10.48550/​arXiv.2301.10207
arXiv: 2301.10207

[115] TV Zache, D. Gonzalez-Cuadra og P. Zoller, Quantum 7, 1140 (2023).
https:/​/​doi.org/​10.22331/​q-2023-10-16-1140

[116] P. Buividovich og M. Polikarpov, Phys. Lett. B 670, 141 (2008).
https://​/​doi.org/​10.1016/​j.physletb.2008.10.032

[117] H. Casini, M. Huerta og JA Rosabal, Phys. Rev. D 89, 085012 (2014).
https://​/​doi.org/​10.1103/​PhysRevD.89.085012

[118] S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. Shiba og H. Tasaki, J. High Energy Phys. 2015 (6), 1.
https://​doi.org/​10.1007/​JHEP06(2015)187

[119] S. Ghosh, RM Soni og SP Trivedi, J. High Energy Phys. 2015 (9), 1.
https://​doi.org/​10.1007/​JHEP09(2015)069

[120] K. Van Acoleyen, N. Bultinck, J. Haegeman, M. Marien, VB Scholz og F. Verstraete, Phys. Rev. Lett. 117, 131602 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.117.131602

[121] J. Lin og D. Radicevic, Nucl. Phys. 958, 115118 (2020).
https://​/​doi.org/​10.1016/​j.nuclphysb.2020.115118

[122] M. Rigobello, S. Notarnicola, G. Magnifico og S. Montangero, Phys. Rev. D 104, 114501 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.104.114501

[123] V. Panizza, R. Costa de Almeida og P. Hauke, Journal of High Energy Physics 2022, 1 (2022).
https://​doi.org/​10.1007/​JHEP09(2022)196

[124] DC Tsui, HL Stormer og AC Gossard, Phys. Rev. Lett. 48, 1559 (1982).
https://​/​doi.org/​10.1103/​PhysRevLett.48.1559

[125] X.-G. Wen, Int. J. Mod. Phys. A 4, 239 (1990).
https://​/​doi.org/​10.1142/​S0217979290000139

[126] AY Kitaev, Annals of Physics 303, 2 (2003).
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[127] A. Kitaev, Annals of Physics 321, 2 (2006).
https://​/​doi.org/​10.1016/​j.aop.2005.10.005

[128] S. Das Sarma, M. Freedman og C. Nayak, Physics Today 59, 32 (2006).
https://​/​doi.org/​10.1063/​1.2337825

[129] C. Nayak, SH Simon, A. Stern, M. Freedman og S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
https://​/​doi.org/​10.1103/​RevModPhys.80.1083

[130] S. Das Sarma, M. Freedman og C. Nayak, npj Quantum Information 1, 1 (2015).
https://​/​doi.org/​10.1038/​npjqi.2015.1

[131] V. Lahtinen og JK Pachos, SciPost Phys. 3, 021 (2017).
https://​/​doi.org/​10.21468/​SciPostPhys.3.3.021

[132] S. Aaronson, i Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (2018) s. 325-338.
https://​/​doi.org/​10.1145/​3188745.3188802

[133] S. Aaronson og GN Rothblum, i Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019) s. 322-333.
https://​/​doi.org/​10.1145/​3313276.3316378

[134] K. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, et al., Science 374, 1237 (2021).
https://​doi.org/​10.1126/​science.abi8378

[135] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, TT Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath , M. Greiner, V. Vuletić og MD Lukin, Science 374, 1242 (2021).
https://​doi.org/​10.1126/​science.abi8794

[136] K. Wan, WJ Huggins, J. Lee og R. Babbush, Commun. Matematik. Phys. 404, 629 (2023).
https:/​/​doi.org/​10.1007/​s00220-023-04844-0

[137] B. Collins og P. Śniady, Commun. i matematik. Phys. 264, 773 (2006).
https:/​/​doi.org/​10.1007/​s00220-006-1554-3

[138] Z. Puchała og J. Miszczak, Bull. polsk acad. Sci. Tech. Sci. , 21 (2017).
https://​/​doi.org/​10.1515/​bpasts-2017-0003

[139] P. Weinberg og M. Bukov, SciPost Phys. 2, 003 (2017).
https://​/​doi.org/​10.21468/​SciPostPhys.2.1.003

[140] SJ van Enk og CWJ Beenakker, Phys. Rev. Lett. 108, 110503 (2012b).
https://​/​doi.org/​10.1103/​PhysRevLett.108.110503

[141] S. Becker, N. Datta, L. Lami og C. Rouzé, IEEE Transactions on Information Theory (2024).
https://​/​doi.org/​10.1109/​TIT.2024.3357972

[142] T. Gu, X. Yuan og B. Wu, Quantum Sci. Teknol. 8, 045008 (2023).
https:/​/​doi.org/​10.1088/​2058-9565/​ace6cd

[143] A. Acharya, S. Saha og AM Sengupta, arXiv preprint arXiv:2105.05992 (2021).
https://​/​doi.org/​10.48550/​arXiv.2105.05992
arXiv: 2105.05992

[144] JJ Bisognano og EH Wichmann, J. Math. Phys. 16, 985 (1975).
https://​/​doi.org/​10.1063/​1.522605

[145] JJ Bisognano og EH Wichmann, J. Math. Phys. 17, 303 (1976).
https://​/​doi.org/​10.1063/​1.522898

[146] HW Blöte og Y. Deng, Phys. Rev. E 66, 066110 (2002).
https://​/​doi.org/​10.1103/​PhysRevE.66.066110

[147] J. Carlson, DJ Dean, M. Hjorth-Jensen, D. Kaplan, J. Preskill, K. Roche, MJ Savage og M. Troyer, Quantum Computing for Theoretical Nuclear Physics, A White Paper udarbejdet for US Department of Energy , Office of Science, Office of Nuclear Physics, Tech. Rep. (USDOE Office of Science (SC)(USA), 2018).

[148] IC Cloët, MR Dietrich, J. Arrington, A. Bazavov, M. Bishof, A. Freese, AV Gorshkov, A. Grassellino, K. Hafidi, Z. Jacob, et al., arXiv preprint arXiv:1903.05453 (2019).
https://​/​doi.org/​10.48550/​arXiv.1903.05453
arXiv: 1903.05453

[149] D. Beck et al., Nuclear Physics and Quantum Information Science, Rapport fra NSAC QIS Subcommittee (2019).

[150] S. Catterall, R. Harnik, VE Hubeny, CW Bauer, A. Berlin, Z. Davoudi, T. Faulkner, T. Hartman, M. Headrick, YF Kahn, et al., arXiv preprint arXiv:2209.14839 (2022).
https://​/​doi.org/​10.48550/​arXiv.2209.14839
arXiv: 2209.14839

[151] D. Beck, J. Carlson, Z. Davoudi, J. Formaggio, S. Quaglioni, M. Savage, J. Barata, T. Bhattacharya, M. Bishof, I. Cloet, et al., arXiv preprint arXiv:2303.00113 ( 2023).
https://​/​doi.org/​10.48550/​arXiv.2303.00113
arXiv: 2303.00113

[152] DE Kharzeev, Phil. Trans. R. Soc. A 380, 20210063 (2022).
https://​/​doi.org/​10.1098/​rsta.2021.0063

[153] A. Cervera-Lierta, JI Latorre, J. Rojo og L. Rottoli, SciPost Phys. 3, 036 (2017).
https://​/​doi.org/​10.21468/​SciPostPhys.3.5.036

[154] SR Beane, DB Kaplan, N. Klco og MJ Savage, Phys. Rev. Lett. 122, 102001 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.102001

[155] SR Beane og RC Farrell, Annals of Physics 433, 168581 (2021).
https://​/​doi.org/​10.1016/​j.aop.2021.168581

[156] SR Beane, RC Farrell og M. Varma, International Journal of Modern Physics A 36, 2150205 (2021).
https://​/​doi.org/​10.1142/​S0217751X21502055

[157] N. Klco og MJ Savage, Phys. Rev. D 103, 065007 (2021a).
https://​/​doi.org/​10.1103/​PhysRevD.103.065007

[158] N. Klco, DH Beck og MJ Savage, Phys. Rev. A 107, 012415 (2023).
https://​/​doi.org/​10.1103/​PhysRevA.107.012415

[159] N. Klco og MJ Savage, Phys. Rev. Lett. 127, 211602 (2021b).
https://​/​doi.org/​10.1103/​PhysRevLett.127.211602

[160] HL Stormer, DC Tsui, og AC Gossard, Rev. Mod. Phys. 71, S298 (1999).
https://​/​doi.org/​10.1103/​RevModPhys.71.S298

[161] ME Cage, K. Klitzing, A. Chang, F. Duncan, M. Haldane, RB Laughlin, A. Pruisken og D. Thouless, The quantum Hall effect (Springer Science & Business Media, 2012).
https:/​/​doi.org/​10.1007/​978-1-4612-3350-3

[162] MA Levin og X.-G. Wen, fys. Rev. B 71, 045110 (2005).
https://​/​doi.org/​10.1103/​PhysRevB.71.045110

[163] M. Levin og X.-G. Wen, fys. Rev. Lett. 96, 110405 (2006).
https://​/​doi.org/​10.1103/​PhysRevLett.96.110405

[164] A. Kitaev og J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
https://​/​doi.org/​10.1103/​PhysRevLett.96.110404

[165] Y. Guryanova, S. Popescu, AJ Short, R. Silva og P. Skrzypczyk, Nat. Commun. 7, 12049 (2016).
https://​/​doi.org/​10.1038/​ncomms12049

[166] N. Yunger Halpern, P. Faist, J. Oppenheim og A. Winter, Nat. Commun. 7, 1 (2016).
https://​/​doi.org/​10.1038/​ncomms12051

[167] M. Lostaglio, D. Jennings og T. Rudolph, New J. Phys. 19, 043008 (2017).
https://​/​doi.org/​10.1088/​1367-2630/​aa617f

[168] NY Halpern, J. Phys. A: Matematik teori. 51, 094001 (2018).
https:/​/​doi.org/​10.1088/​1751-8121/​aaa62f

[169] N. Yunger Halpern, ME Beverland og A. Kalev, Phys. Rev. E 101, 042117 (2020).
https://​/​doi.org/​10.1103/​PhysRevE.101.042117

[170] K. Fukai, Y. Nozawa, K. Kawahara og TN Ikeda, Phys. Rev. Res. 2, 033403 (2020).
https://​/​doi.org/​10.1103/​PhysRevResearch.2.033403

[171] S. Popescu, AB Sainz, AJ Short og A. Winter, Phys. Rev. Lett. 125, 090601 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.090601

[172] N. Yunger Halpern og S. Majidy, npj Quant. Inf. 8, 10 (2022).
https:/​/​doi.org/​10.1038/​s41534-022-00516-4

[173] F. Kranzl, A. Lasek, MK Joshi, A. Kalev, R. Blatt, CF Roos og NY Halpern, arXiv preprint arXiv:2202.04652 (2022).
https://​/​doi.org/​10.48550/​arXiv.2202.04652
arXiv: 2202.04652

[174] G. Manzano, JM Parrondo og GT Landi, PRX Quantum 3, 010304 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.010304

[175] Y. Mitsuhashi, K. Kaneko og T. Sagawa, Phys. Rev. X 12, 021013 (2022).
https://​/​doi.org/​10.1103/​PhysRevX.12.021013

[176] S. Majidy, A. Lasek, DA Huse og NY Halpern, Phys. Rev. B 107, 045102 (2023).
https://​/​doi.org/​10.1103/​PhysRevB.107.045102

[177] SN Hearth, MO Flynn, A. Chandran og CR Laumann, arXiv preprint arXiv:2306.01035 (2023a).
https://​/​doi.org/​10.48550/​arXiv.2306.01035
arXiv: 2306.01035

[178] SN Hearth, MO Flynn, A. Chandran og CR Laumann, arXiv preprint arXiv:2311.09291 (2023b).
https://​/​doi.org/​10.48550/​arXiv.2311.09291
arXiv: 2311.09291

[179] K. Van Kirk, J. Cotler, H.-Y. Huang og MD Lukin, arXiv preprint arXiv:2212.06084 (2022).
https://​/​doi.org/​10.48550/​arXiv.2212.06084
arXiv: 2212.06084

[180] V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Vermersch og M. Dalmonte, SciPost Phys. 12, 106 (2022).
https://​/​doi.org/​10.21468/​SciPostPhys.12.3.106

[181] A. Rath, V. Vitale, S. Murciano, M. Votto, J. Dubail, R. Kueng, C. Branciard, P. Calabrese og B. Vermersch, PRX Quantum 4, 010318 (2023).
https://​/​doi.org/​10.1103/​PRXQuantum.4.010318

[182] https:/​/​itconnect.uw.edu/​research/​hpc.
https:/​/​itconnect.uw.edu/​research/​hpc

[183] N. Hunter-Jones, arXiv preprint arXiv:1905.12053 (2019).
https://​/​doi.org/​10.48550/​arXiv.1905.12053
arXiv: 1905.12053

[184] D. Gross, K. Audenaert og J. Eisert, J. Math. Phys. 48, 052104 (2007).
https://​/​doi.org/​10.1063/​1.2716992

[185] RA Low, arXiv preprint arXiv:1006.5227 (2010).
https://​/​doi.org/​10.48550/​arXiv.1006.5227
arXiv: 1006.5227

[186] P. Dulian og A. Sawicki, arXiv preprint arXiv:2210.07872 (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.07872
arXiv: 2210.07872

[187] https://​/​docs.scipy.org/​doc/​scipy/​reference/​generated/​scipy.optimize.shgo.html,.
https://​/​docs.scipy.org/​doc/​scipy/​reference/​generated/​scipy.optimize.shgo.html

Citeret af

[1] Niklas Mueller, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu og Kübra Yeter-Aydeniz, "Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory", PRX Quantum 4 3, 030323 (2023).

[2] Andrea Bulgarelli og Marco Panero, "Entanglement entropy from non-equilibrium Monte Carlo simulations", Journal of High Energy Physics 2023 6, 30 (2023).

[3] Dongjin Lee og Beni Yoshida, "Randomly Monitored Quantum Codes", arXiv: 2402.00145, (2024).

[4] Yongtao Zhan, Andreas Elben, Hsin-Yuan Huang og Yu Tong, "Læring af bevarelseslove i ukendt kvantedynamik", arXiv: 2309.00774, (2023).

[5] Edison M. Murairi og Michael J. Cervia, "Reducing circuit depth with qubitwise diagonalization", Fysisk anmeldelse A 108 6, 062414 (2023).

[6] Jesús Cobos, David F. Locher, Alejandro Bermudez, Markus Müller og Enrique Rico, "Noise-aware variational eigensolvers: a dissipative route for lattice gauge theories", arXiv: 2308.03618, (2023).

[7] Lento Nagano, Alexander Miessen, Tamiya Onodera, Ivano Tavernelli, Francesco Tacchino og Koji Terashi, "Kvantedatalæring til kvantesimuleringer i højenergifysik", Physical Review Research 5 4, 043250 (2023).

Ovenstående citater er fra SAO/NASA ADS (sidst opdateret 2024-03-28 01:48:03). Listen kan være ufuldstændig, da ikke alle udgivere leverer passende og fuldstændige citatdata.

On Crossrefs citeret af tjeneste ingen data om at citere værker blev fundet (sidste forsøg 2024-03-28 01:48:01).

Tidsstempel:

Mere fra Quantum Journal