Stilbaserede kvantegenerative modstridende netværk til Monte Carlo-begivenheder PlatoBlockchain Data Intelligence. Lodret søgning. Ai.

Stilbaserede kvantegenerative modstridende netværk til Monte Carlo-begivenheder

Carlos Bravo-Prieto1,2, Julien Baglio3, Marco Cè3, Anthony Francis3,4, Dorota M. Grabowska3, og Stefano Carrazza1,3,5

1Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
2Departament de Física Quàntica i Astrofísica og Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, ​​Barcelona, ​​Spanien.
3Teoretisk fysikafdeling, CERN, CH-1211 Geneve 23, Schweiz.
4Institut for Fysik, National Yang Ming Chiao Tung Universitet, Hsinchu 30010, Taiwan.
5TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano og INFN Sezione di Milano, Milano, Italien.

Finder du denne artikel interessant eller vil du diskutere? Scite eller efterlade en kommentar på SciRate.

Abstrakt

Vi foreslår og vurderer en alternativ kvantegeneratorarkitektur i sammenhæng med generativ adversarial læring til Monte Carlo-hændelsesgenerering, der bruges til at simulere partikelfysiske processer ved Large Hadron Collider (LHC). Vi validerer denne metode ved at implementere kvantenetværket på kunstige data genereret fra kendte underliggende distributioner. Netværket anvendes derefter på Monte Carlo-genererede datasæt af specifikke LHC-spredningsprocesser. Den nye kvantegeneratorarkitektur fører til en generalisering af de avancerede implementeringer, der opnår mindre Kullback-Leibler-divergenser selv med netværk med lav dybde. Desuden lærer kvantegeneratoren med succes de underliggende distributionsfunktioner, selvom den trænes med små træningsprøvesæt; dette er især interessant for dataforstærkningsapplikationer. Vi implementerer denne nye metodologi på to forskellige kvantehardwarearkitekturer, fanget-ion og superledende teknologier, for at teste dens hardwareuafhængige levedygtighed.

► BibTeX-data

► Referencer

[1] J. Preskill, Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, JC Bardin, R. Barends, R. Biswas, S. Boixo, FGSL Brandao, DA Buell, et al., Nature 574, 505 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[3] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., Science 370, 1460 (2020).
https://​doi.org/​10.1126/​science.abe8770

[4] M. Cerezo, A. Arrasmith, R. Babbush, SC Benjamin, S. Endo, K. Fujii, JR McClean, K. Mitarai, X. Yuan, L. Cincio, et al., Nature Reviews Physics 3, 625–644 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[5] K. Bharti, A. Cervera-Lierta, TH Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, JS Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek og A. Aspuru-Guzik, Reviews of Modern Physics 94, 015004 (2022).
https://​/​doi.org/​10.1103/​RevModPhys.94.015004

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe og S. Lloyd, Nature 549, 195 (2017).
https://​/​doi.org/​10.1038/​nature23474

[7] M. Schuld og F. Petruccione, Supervised learning with quantum computers, Vol. 17 (Springer, 2018).
https:/​/​doi.org/​10.1007/​978-3-319-96424-9

[8] N. Wiebe, D. Braun og S. Lloyd, Physical Review Letters 109, 050505 (2012).
https://​/​doi.org/​10.1103/​PhysRevLett.109.050505

[9] S. Lloyd, M. Mohseni og P. Rebentrost, arXiv preprint arXiv:1307.0411 (2013).
https://​/​doi.org/​10.48550/​arXiv.1307.0411
arXiv: 1307.0411

[10] P. Rebentrost, M. Mohseni og S. Lloyd, Physical Review Letters 113, 130503 (2014).
https://​/​doi.org/​10.1103/​physrevlett.113.130503

[11] I. Kerenidis og A. Prakash, Physical Review A 101, 022316 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.101.022316

[12] AW Harrow, A. Hassidim og S. Lloyd, Physical Review Letters 103, 150502 (2009).
https://​/​doi.org/​10.1103/​PhysRevLett.103.150502

[13] M. Benedetti, E. Lloyd, S. Sack og M. Fiorentini, Quantum Science and Technology 4, 043001 (2019a).
https:/​/​doi.org/​10.1088/​2058-9565/​ab4eb5

[14] S. Sim, PD Johnson og A. Aspuru-Guzik, Advanced Quantum Technologies 2, 1900070 (2019).
https://​/​doi.org/​10.1002/​qute.201900070

[15] C. Bravo-Prieto, J. Lumbreras-Zarapico, L. Tagliacozzo og JI Latorre, Quantum 4, 272 (2020).
https:/​/​doi.org/​10.22331/​q-2020-05-28-272

[16] M. Larocca, N. Ju, D. García-Martín, PJ Coles og M. Cerezo, arXiv preprint arXiv:2109.11676 (2021).
https://​/​doi.org/​10.48550/​arXiv.2109.11676
arXiv: 2109.11676

[17] M. Schuld, R. Sweke og JJ Meyer, Physical Review A 103, 032430 (2021).
https://​/​doi.org/​10.1103/​PhysRevA.103.032430

[18] T. Goto, QH Tran og K. Nakajima, Physical Review Letters 127, 090506 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.127.090506

[19] A. Pérez-Salinas, D. López-Núñez, A. García-Sáez, P. Forn-Díaz og JI Latorre, Physical Review A 104, 012405 (2021).
https://​/​doi.org/​10.1103/​PhysRevA.104.012405

[20] V. Havlíček, AD Córcoles, K. Temme, AW Harrow, A. Kandala, JM Chow og JM Gambetta, Nature 567, 209 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[21] M. Schuld, A. Bocharov, KM Svore og N. Wiebe, Physical Review A 101, 032308 (2020).
https://​/​doi.org/​10.1103/​physreva.101.032308

[22] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster og JI Latorre, Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[23] T. Dutta, A. Pérez-Salinas, JPS Cheng, JI Latorre og M. Mukherjee, Physical Review A 106, 012411 (2022).
https://​/​doi.org/​10.1103/​PhysRevA.106.012411

[24] J. Romero, JP Olson og A. Aspuru-Guzik, Quantum Science and Technology 2, 045001 (2017).
https://​/​doi.org/​10.1088/​2058-9565/​aa8072

[25] A. Pepper, N. Tischler og GJ Pryde, Physical Review Letters 122, 060501 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.060501

[26] C. Bravo-Prieto, Machine Learning: Science and Technology 2, 035028 (2021).
https://​/​doi.org/​10.1088/​2632-2153/​ac0616

[27] C. Cao og X. Wang, Physical Review Applied 15, 054012 (2021).
https://​/​doi.org/​10.1103/​PhysRevApplied.15.054012

[28] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam og A. Perdomo-Ortiz, npj Quantum Information 5, 1 (2019b).
https:/​/​doi.org/​10.1038/​s41534-019-0157-8

[29] KE Hamilton, EF Dumitrescu og RC Pooser, Physical Review A 99, 062323 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.99.062323

[30] B. Coyle, D. Mills, V. Danos og E. Kashefi, npj Quantum Information 6, 1 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00288-9

[31] P.-L. Dallaire-Demers og N. Killoran, Physical Review A 98, 012324 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.98.012324

[32] S. Lloyd og C. Weedbrook, Physical Review Letters 121, 040502 (2018).
https://​/​doi.org/​10.1103/​PhysRevLett.121.040502

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville og Y. Bengio, Communications of the ACM 63, 139-144 (2020).
https://​/​doi.org/​10.1145/​3422622

[34] C. Zoufal, A. Lucchi og S. Woerner, npj Quantum Information 5, 1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0223-2

[35] J. Zeng, Y. Wu, J.-G. Liu, L. Wang og J. Hu, Physical Review A 99, 052306 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.99.052306

[36] H. Situ, Z. He, Y. Wang, L. Li og S. Zheng, Information Sciences 538, 193 (2020).
https:/​/​doi.org/​10.1016/​j.ins.2020.05.127

[37] L. Hu, S.-H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D.-L. Deng, C.-L. Zou, et al., Science advances 5, eaav2761 (2019).
https://​/​doi.org/​10.1126/​sciadv.aav2761

[38] M. Benedetti, E. Grant, L. Wossnig og S. Severini, New Journal of Physics 21, 043023 (2019c).
https:/​/​doi.org/​10.1088/​1367-2630/​ab14b5

[39] J. Romero og A. Aspuru-Guzik, Advanced Quantum Technologies 4, 2000003 (2021).
https://​/​doi.org/​10.1002/​qute.202000003

[40] MY Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi og H. Neven, Physical Review Letters 128, 220505 (2022).
https://​/​doi.org/​10.1103/​PhysRevLett.128.220505

[41] T. Karras, S. Laine og T. Aila, IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 4217 (2021).
https://​/​doi.org/​10.1109/​TPAMI.2020.2970919

[42] A. Pérez-Salinas, J. Cruz-Martinez, AA Alhajri og S. Carrazza, Physical Review D 103, 034027 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.103.034027

[43] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S. Vallecorsa og J.-R. Vlimant, Machine Learning: Science and Technology 2, 011003 (2021).
https://​/​doi.org/​10.1088/​2632-2153/​abc17d

[44] SY Chang, S. Vallecorsa, EF Combarro og F. Carminati, arXiv preprint arXiv:2101.11132 (2021a).
https://​/​doi.org/​10.48550/​arXiv.2101.11132
arXiv: 2101.11132

[45] SY Chang, S. Herbert, S. Vallecorsa, EF Combarro og R. Duncan, EPJ Web of Conferences 251, 03050 (2021b).
https://​/​doi.org/​10.1051/​epjconf/​202125103050

[46] V. Belis, S. González-Castillo, C. Reissel, S. Vallecorsa, EF Combarro, G. Dissertori og F. Reiter, EPJ Web of Conferences 251, 03070 (2021).
https://​/​doi.org/​10.1051/​epjconf/​202125103070

[47] GR Khattak, S. Vallecorsa, F. Carminati og GM Khan, The European Physical Journal C 82, 1 (2022).
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10258-4

[48] P. Baldi, L. Blecher, A. Butter, J. Collado, JN Howard, F. Keilbach, T. Plehn, G. Kasieczka og D. Whiteson, arXiv preprint arXiv:2012.11944 (2021).
https://​/​doi.org/​10.48550/​arXiv.2012.11944
arXiv: 2012.11944

[49] M. Backes, A. Butter, T. Plehn og R. Winterhalder, SciPost Physics 10, 89 (2021).
https://​/​doi.org/​10.21468/​SciPostPhys.10.4.089

[50] A. Butter og T. Plehn, i Artificial Intelligence For High Energy Physics (World Scientific, 2022) s. 191-240.
https://​/​doi.org/​10.1142/​9789811234033_0007

[51] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman og T. Plehn, SciPost Physics 10, 139 (2021).
https://​/​doi.org/​10.21468/​SciPostPhys.10.6.139

[52] A. Butter, T. Plehn og R. Winterhalder, SciPost Physics Core 3, 9 (2020).
https://​/​doi.org/​10.21468/​SciPostPhysCore.3.2.009

[53] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn og R. Winterhalder, SciPost Physics 8, 70 (2020).
https://​/​doi.org/​10.21468/​SciPostPhys.8.4.070

[54] A. Butter, T. Plehn og R. Winterhalder, SciPost Physics 7, 75 (2019).
https://​/​doi.org/​10.21468/​SciPostPhys.7.6.075

[55] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, JI Latorre og S. Carrazza, Quantum Science and Technology 7, 015018 ( 2021a).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[56] S. Efthymiou, S. Carrazza, S. Ramos, bpcarlos, AdrianPerezSalinas, D. García-Martín, Paul, J. Serrano og atomprinter, qiboteam/​qibo: Qibo 0.1.6-rc1 (2021b).
https://​/​doi.org/​10.5281/​zenodo.5088103

[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, GS Corrado, A. Davis, J. Dean, M. Devin, et al., TensorFlow: Large-scale machine learning om heterogene systemer (2015), software tilgængelig fra tensorflow.org.
https://www.tensorflow.org/​

[58] afrancis heplat, C. Bravo-Prieto, S. Carrazza, M. Cè, J. Baglio og dm grabowska, Qti-th/​style-qgan: v1.0.0 (2021).
https://​/​doi.org/​10.5281/​zenodo.5567077

[59] MD Zeiler, arXiv preprint arXiv:1212.5701 (2012).
https://​/​doi.org/​10.48550/​arXiv.1212.5701
arXiv: 1212.5701

[60] M. Ostaszewski, E. Grant og M. Benedetti, Quantum 5, 391 (2021).
https:/​/​doi.org/​10.22331/​q-2021-01-28-391

[61] S. Kullback og RA Leibler, The Annals of Mathematical Statistics 22, 79 (1951).
https://​/​doi.org/​10.1214/​aoms/​1177729694

[62] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger og H. Greenspan, i 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018) s. 289-293.
https:/​/​doi.org/​10.1109/​ISBI.2018.8363576

[63] FHK dos Santos Tanaka og C. Aranha, arXiv preprint arXiv:1904.09135 (2019).
https://​/​doi.org/​10.48550/​arXiv.1904.09135
arXiv: 1904.09135

[64] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, HS Shao, T. Stelzer, P. Torrielli og M. Zaro, Journal of High Energy Physics 07, 079 (2014) ).
https://​doi.org/​10.1007/​JHEP07(2014)079

[65] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, HS Shao og M. Zaro, Journal of High Energy Physics 07, 185 (2018).
https://​doi.org/​10.1007/​JHEP07(2018)185

[66] I.-K. Yeo og RA Johnson, Biometrika 87, 954 (2000).
https://​/​doi.org/​10.1093/​biomet/​87.4.954

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot og E. Duchesnay, Journal of Machine Learning Research 12, 2825-2830 (2011).
https://​/​dl.acm.org/​doi/​10.5555/​1953048.2078195

[68] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, FJ Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, et al., Qiskit: An Open-source Framework for Quantum Computing (2019).
https://​/​doi.org/​10.5281/​zenodo.2562111

Citeret af

[1] Travis S. Humble, Andrea Delgado, Raphael Pooser, Christopher Seck, Ryan Bennink, Vicente Leyton-Ortega, C. -C. Joseph Wang, Eugene Dumitrescu, Titus Morris, Kathleen Hamilton, Dmitry Lyakh, Prasanna Date, Yan Wang, Nicholas A. Peters, Katherine J. Evans, Marcel Demarteau, Alex McCaskey, Thien Nguyen, Susan Clark, Melissa Reville, Alberto Di Meglio, Michele Grossi, Sofia Vallecorsa, Kerstin Borras, Karl Jansen og Dirk Krücker, "Snowmass White Paper: Quantum Computing Systems and Software for High-energy Physics Research", arXiv: 2203.07091.

[2] Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan, Gregor Kasieczka, Claudius Krause, David Shih, Vinicius Mikuni, Benjamin Nachman, Kevin Pedro og Daniel Winklehner, "Nye retninger for surrogatmodeller og differentierbar programmering for højenergifysik detektorsimulering", arXiv: 2203.08806.

[3] Andrea Delgado, Kathleen E. Hamilton, Prasanna Date, Jean-Roch Vlimant, Duarte Magano, Yasser Omar, Pedrame Bargassa, Anthony Francis, Alessio Gianelle, Lorenzo Sestini, Donatella Lucchesi, Davide Zuliani, Davide Nicotra, Jacco de Vries, Dominica Dibenedetto, Miriam Lucio Martinez, Eduardo Rodrigues, Carlos Vazquez Sierra, Sofia Vallecorsa, Jesse Thaler, Carlos Bravo-Prieto, su Yeon Chang, Jeffrey Lazar og Carlos A. Argüelles, "Quantum Computing for Data Analysis in High-Energy Physics" , arXiv: 2203.08805.

[4] Yuxuan Du, Zhuozhuo Tu, Bujiao Wu, Xiao Yuan og Dacheng Tao, "Power of Quantum Generative Learning", arXiv: 2205.04730.

[5] Stefano Carrazza, Stavros Efthymiou, Marco Lazzarin og Andrea Pasquale, "An open source modular framework for quantum computing", arXiv: 2202.07017.

[6] Sandra Nguemto og Vicente Leyton-Ortega, "Re-QGAN: an optimized adversarial quantum circuit learning framework", arXiv: 2208.02165.

[7] Gabriele Agliardi, Michele Grossi, Mathieu Pellen og Enrico Prati, "Kvanteintegration af elementære partikelprocesser", Physics Letters B 832, 137228 (2022).

[8] Jack Y. Araz og Michael Spannowsky, "Classical versus Quantum: comparing Tensor Network-based Quantum Circuits on LHC data", arXiv: 2202.10471.

[9] Andrea Delgado og Kathleen E. Hamilton, "Usupervised Quantum Circuit Learning in High Energy Physics", arXiv: 2203.03578.

[10] Sulaiman Alvi, Christian Bauer og Benjamin Nachman, "Quantum Anomaly Detection for Collider Physics", arXiv: 2206.08391.

[11] Oriel Kiss, Michele Grossi, Enrique Kajomovitz og Sofia Vallecorsa, "Conditional Born machine for Monte Carlo events generation", arXiv: 2205.07674.

Ovenstående citater er fra SAO/NASA ADS (sidst opdateret 2022-08-18 08:19:35). Listen kan være ufuldstændig, da ikke alle udgivere leverer passende og fuldstændige citatdata.

On Crossrefs citeret af tjeneste ingen data om at citere værker blev fundet (sidste forsøg 2022-08-18 08:19:33).

Tidsstempel:

Mere fra Quantum Journal