Qibolab: avatud lähtekoodiga hübriidkvant-operatsioonisüsteem

Qibolab: avatud lähtekoodiga hübriidkvant-operatsioonisüsteem

Stavros Efthymiou1, Alvaro Orgaz-Fuertes1, Rodolfo Carobene2,3,1, Juan Cereijo1,4, Andrea Pasquale1,5,6, Sergi Ramos-Calderer1,4, Simone Bordoni1,7,8, David Fuentes-Ruiz1, Alessandro Candido5,6,9, Edoardo Pedicillo1,5,6, Matteo Robbiati5,9, Yuanzheng Paul Tan10, Jadwiga Wilkens1, Ingo Roth1, José Ignacio Latorre1,11,4ja Stefano Carrazza9,5,6,1

1Quantum Research Center, Technology Innovation Institute, Abu Dhabi, AÜE.
2Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Itaalia.
3INFN – Sezione di Milano Bicocca, I-20126 Milano, Itaalia.
4Departament de Física Quàntica i Astrofísica ja Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, ​​Barcelona, ​​Hispaania.
5TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano, Itaalia
6INFN, Sezione di Milano, I-20133 Milano, Itaalia.
7Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rooma, Itaalia
8Rooma La Sapienza Ülikool, osakond füüsika, Rooma, Itaalia
9CERN, teoreetilise füüsika osakond, CH-1211 Geneva 23, Šveits.
10Füüsika ja rakendusfüüsika osakond, Nanyangi tehnikaülikooli füüsika- ja matemaatikateaduste kool, 21 Nanyang Link, Singapur 637371, Singapur.
11Singapuri riikliku ülikooli kvanttehnoloogia keskus.

Kas see artikkel on huvitav või soovite arutada? Scite või jätke SciRate'i kommentaar.

Abstraktne

Esitleme $texttt{Qibolab}$, avatud lähtekoodiga tarkvarateeki kvantriistvara juhtimiseks, mis on integreeritud kvantarvutite vahevara raamistikuga $texttt{Qibo}$. $texttt{Qibolab}$ pakub tarkvarakihti, mis on vajalik vooluringipõhiste algoritmide automaatseks täitmiseks kohandatud isehostitud kvantriistvaraplatvormidel. Tutvustame objektide komplekti, mis on loodud pakkuma programmilist juurdepääsu kvantjuhtimisele instrumentide, transpilerite ja optimeerimisalgoritmide impulss-orienteeritud draiverite kaudu. $texttt{Qibolab}$ võimaldab eksperimentalistidel ja arendajatel delegeerida kõik riistvara juurutamise keerulised aspektid raamatukogule, et nad saaksid standardiseerida kvantarvutusalgoritmide juurutamist laiendataval riistvaraagnostilisel viisil, kasutades ülijuhtivaid kubite esimese ametlikult toetatud kvanttehnoloogiana. Esmalt kirjeldame teegi kõigi komponentide olekut, seejärel näitame ülijuhtivate kubitiplatvormide juhtimisseadistuse näiteid. Lõpuks tutvustame ahelapõhiste algoritmidega seotud edukaid rakendustulemusi.

Esitleme Qibolabi, avatud lähtekoodiga tarkvara raamatukogu kvantriistvara juhtimiseks, mis on integreeritud hübriidse kvantoperatsioonisüsteemiga Qibo. Qibolab pakub tarkvarakihti, mis on vajalik vooluringipõhiste algoritmide automaatseks täitmiseks kohandatud isehostitud kvantriistvaraplatvormidel. See tarkvara võimaldab eksperimentalistidel ja kvanttarkvara arendajatel delegeerida kõik riistvara juurutamise keerulised aspektid raamatukogule, et nad saaksid standardiseerida kvantarvutusalgoritmide juurutamist laiendataval riistvaraagnostilisel viisil.

► BibTeX-i andmed

► Viited

[1] R. Brun ja F. Rademakers, Tuumainstrumendid ja -meetodid füüsikauuringutes A osa: Kiirendid, spektromeetrid, detektorid ja nendega seotud seadmed 389, 81 (1997), uued arvutustehnikad füüsikauuringutes V.
https:/​/​doi.org/​10.1016/​S0168-9002(97)00048-X

[2] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli ja M. Zaro, Journal of High Energy Physics 2014, 10.1007/​jhep07(2014)079 (2014).
https://​/​doi.org/​10.1007/​jhep07(2014)079

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, GS Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp , G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke , Y. Yu ja X. Zheng, TensorFlow: Large-scale masinõpe heterogeensetes süsteemides (2015), tarkvara on saadaval saidilt tensorflow.org.
https://​/​www.tensorflow.org/​

[4] Cirq, pythoni raamistik müralise keskmise skaala kvantide (NISQ) ahelate loomiseks, redigeerimiseks ja esilekutsumiseks (2018).
https://​/​github.com/​quantumlib/​Cirq

[5] M. Broughton ja teised, Tensorflow quantum: A software framework for quantum machine learning (2020).
https://​/​doi.org/​10.48550/​arXiv.2003.02989

[6] H. Abraham jt, Qiskit: An Open-source framework for quantum computing (2019).
https://​/​doi.org/​10.5281/​zenodo.2562110

[7] RS Smith, MJ Curtis ja WJ Zeng, praktiline kvantjuhiste komplekti arhitektuur (2016).
https://​/​doi.org/​10.48550/​arXiv.1608.03355

[8] GG Guerreschi, J. Hogaboam, F. Baruffa ja NPD Sawaya, Quantum Science and Technology 5, lk 034007 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​ab8505

[9] A. Kelly, Kvantarvutite simuleerimine opencl-i abil (2018).
https://​/​doi.org/​10.48550/​arXiv.1805.00988

[10] Qulacsi arendajad, Qulacs (2018).
https://​/​github.com/​qulacs/​qulacs

[11] T. Jones, A. Brown, I. Bush ja SC Benjamin, Scientific Reports 9, 10.1038/s41598-019-47174-9 (2019).
https:/​/​doi.org/​10.1038/​s41598-019-47174-9

[12] P. Zhang, J. Yuan ja X. Lu, teoses Algorithms and Architectures for Parallel Processing, toimetanud G. Wang, A. Zomaya, G. Martinez ja K. Li (Springer International Publishing, Cham, 2015) lk. 241–256.
https:/​/​doi.org/​10.1007/​978-3-319-27119-4_17

[13] DS Steiger, T. Häner ja M. Troyer, Quantum 2, 49 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-31-49

[14] Q# programmeerimiskeel (2017).
https://​/​docs.microsoft.com/​en-us/​quantum/​user-guide/​?view=qsharp-preview

[15] A. Zulehner ja R. Wille, Advanced simulation of quantum computations (2017).
https://​/​doi.org/​10.48550/​arXiv.1707.00865

[16] E. Pednault ja jt, Pareto-efektiivne kvantahela simulatsioon tensori kontraktsiooni edasilükkamise abil (2017).
https://​/​doi.org/​10.48550/​arXiv.1710.05867

[17] S. Bravyi ja D. Gosset, Physical Review Letters 116, lk 250501 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.116.250501

[18] K. De Raedt ja jt, Computer Physics Communications 176, lk 121 (2007).
https://​/​doi.org/​10.1016/​j.cpc.2006.08.007

[19] ES Fried jt, PLOS ONE 13, e0208510 (2018).
https://​/​doi.org/​10.1371/​journal.pone.0208510

[20] B. Villalonga jt, npj Quantum Information 5, 10.1038/s41534-019-0196-1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0196-1

[21] X.-Z. Luo, J.-G. Liu, P. Zhang ja L. Wang, Yao.jl: Laiendatav, tõhus raamistik kvantalgoritmi kujundamiseks (2019), [kvant-ph].
https:/​/​doi.org/​10.22331/​q-2020-10-11-341

[22] V. Bergholm ja jt., Pennylane: Automatic differentiation of hybrid quantum-classical computations (2018), arXiv:1811.04968 [kvant-ph].
arXiv: 1811.04968

[23] J. Doi ja jt., Proceedings of the 16th ACM International Conference on Computing Frontiers, CF '19 (Association for Computing Machinery, New York, NY, USA, 2019) lk. 85–93.
https://​/​doi.org/​10.1145/​3310273.3323053

[24] M. Möller ja M. Schalkers, arvutusteadus – ICCS 2020, toimetajad VV Krzhizhanovskaya, G. Závodszky, MH Lees, JJ Dongarra, PMA Sloot, S. Brissos ja J. Teixeira (Springer International Publishing, Cham, 2020) lk 451–464.
https:/​/​doi.org/​10.1007/​978-3-030-50433-5_35

[25] T. Jones ja S. Benjamin, Quantum Science and Technology 5, 034012 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​ab8506

[26] Z.-Y. Chen jt, Science Bulletin 63, lk 964–971 (2018).
https://​/​doi.org/​10.1016/​j.scib.2018.06.007

[27] H. Bian, J. Huang, R. Dong, Y. Guo ja X. Wang, teoses Algorithms and Architectures for Parallel Processing, toimetanud M. Qiu (Springer International Publishing, 2020), lk 111–125.
https:/​/​doi.org/​10.1007/​978-3-030-60239-0_8

[28] I. Meyerov, A. Liniov, M. Ivanchenko ja S. Denisov, Simulating quantum dynamics: Evolution of algorithms in the hpc kontekstis (2020), arXiv:2005.04681 [quant-ph].
arXiv: 2005.04681

[29] AA Moueddene, N. Khammassi, K. Bertels ja CG Almudever, Realistic simulation of quantum computation using unitary and mõõte channels (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.052608

[30] Z. Wang ja jt., Kvantahela simulaator ja selle rakendused sunway taihulighti superarvutis (2020).
https://​/​doi.org/​10.1038/​s41598-020-79777-y

[31] JH Nielsen, M. Astafev, WH Nielsen, D. Vogel, lakhotiaharshit, A. Johnson, A. Hardal, Akshita, sohail chatoor, F. Bonabi, Liang, G. Ungaretti, S. Pauka, T. Morgan, Adriaan, P Eendebak, B. Nijholt, qSaevar, P. Eendebak, S. Droege, Samantha, J. Darulova, R. van Gulik, N. Pearson, ThorvaldLarsen ja A. Corna, Qcodes/​qcodes: Qcodes 0.43.0 (2024) ).
https://​/​doi.org/​10.5281/​zenodo.10459033

[32] M. Rol, C. Dickel, S. Asaad, N. Langford, C. Bultink, R. Sagastizabal, N. Langford, G. de Lange, X. Fu, S. de Jong, F. Luthi ja W. Vlothuizen , DiCarloLab-Delft/​PycQED_py3: esialgne avalik väljalase (2016).
https://​/​doi.org/​10.5281/​zenodo.160327

[33] Keysight, Labber, https://​/​www.keysight.com/​us/​en/​lib/​software-detail/​instrument-firmware-software/​labber-3113052.html (2022).
https://​/​www.keysight.com/​us/​en/​lib/​software-detail/​instrument-firmware-software/​labber-3113052.html

[34] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, a.-M. . í, . Diego Garcí, A. Garcia-Saez, JI Latorre ja S. Carrazza, Quantum Science and Technology 7, 015018 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[35] S. Efthymiou, M. Lazzarin, A. Pasquale ja S. Carrazza, Quantum 6, 814 (2022).
https:/​/​doi.org/​10.22331/​q-2022-09-22-814

[36] S. Carrazza, S. Efthymiou, M. Lazzarin ja A. Pasquale, Journal of Physics: Conference Series 2438, 012148 (2023).
https:/​/​doi.org/​10.1088/​1742-6596/​2438/​1/​012148

[37] S. Efthymiou et al., qiboteam/​qibo: Qibo 0.1.12 (2023a).
https://​/​doi.org/​10.5281/​zenodo.7736837

[38] S. Efthymiou et al., qiboteam/​qibolab: Qibolab 0.0.2 (2023b).
https://​/​doi.org/​10.5281/​zenodo.7748527

[39] J. Preskill, (2018a).
http://​/​theory.caltech.edu/​~preskill/​ph219/​chap3_15.pdf

[40] A. He, B. Nachman, WA de Jong ja CW Bauer, Phys. Rev. A 102, 012426 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.012426

[41] A. Sopena, MH Gordon, G. Sierra ja E. López, Quantum Science and Technology 6, 045003 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac0e7a

[42] E. van den Berg, ZK Minev ja K. Temme, Physical Review A 105, 10.1103/​physreva.105.032620 (2022).
https://​/​doi.org/​10.1103/​physreva.105.032620

[43] D. Coppersmith, Kvantfaktorinduses kasulik ligikaudne Fourier-teisendus (2002a).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv:quant-ph/0201067

[44] A. Peruzzo jt, Nature communications 5, lk 4213 (2014).
https://​/​doi.org/​10.1038/​ncomms5213

[45] A. Garcia-Saez ja JI Latorre, Raskete klassikaliste probleemide käsitlemine adiabaatiliselt abistatud variatsioonilise kvantomalahendajaga (2018).
https://​/​doi.org/​10.48550/​arXiv.1806.02287

[46] E. Farhi, J. Goldstone ja S. Gutmann, A quantum approximate optimization algorithm (2014).
https://​/​doi.org/​10.48550/​arXiv.1411.4028

[47] AB Magann, KM Rudinger, MD Grace ja M. Sarovar, Physical Review Letters 129, 10.1103/physrevlett.129.250502 (2022).
https://​/​doi.org/​10.1103/​physrevlett.129.250502

[48] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, DM Grabowska ja S. Carrazza, Quantum 6, 777 (2022).
https:/​/​doi.org/​10.22331/​q-2022-08-17-777

[49] LK Grover, Kiire kvantmehaaniline algoritm andmebaasiotsinguks (1996).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​9605043
arXiv:quant-ph/9605043

[50] S. Hadfield, Z. Wang, BO Gorman, E. Rieffel, D. Venturelli ja R. Biswas, Algorithms 12, 34 (2019).
https://​/​doi.org/​10.3390/​a12020034

[51] E. Farhi, J. Goldstone, S. Gutmann ja M. Sipser, Quantum computation by adiabatic evolution (2000).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0001106
arXiv:quant-ph/0001106

[52] Qibo: API dokumentatsiooni näited, https://​/​qibo.science/​qibo/​stable/​api-reference/​index.html.
https://​/​qibo.science/​qibo/​stable/​api-reference/​index.html

[53] J. Preskill, Quantum 2, 79 (2018b).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[54] TE Oliphant, NumPy juhend (Trelgol, 2006).

[55] DE Rumelhart, GE Hinton ja RJ Williams, Nature 323, 533 (1986).
https://​/​doi.org/​10.1038/​323533a0

[56] SK Lam, A. Pitrou ja S. Seibert, Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (2015) lk 1–6.
https://​/​doi.org/​10.1145/​2833157.2833162

[57] R. Okuta, Y. Unno, D. Nishino, S. Hido ja C. Loomis, Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS) (2017) .
http://​/​learningsys.org/​nips17/​assets/​papers/​paper_16.pdf

[58] T. cuQuantumi arendusmeeskond, cuquantum (2023), kui kasutate seda tarkvara, viidake sellele järgmiselt.
https://​/​doi.org/​10.5281/​zenodo.7806810

[59] D. Coppersmith, Kvantfaktorinduses kasulik ligikaudne Fourier-teisendus (2002b).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv:quant-ph/0201067

[60] E. Bernstein ja U. Vazirani, SIAM Journal on Computing 26, 1411 (1997).
https://​/​doi.org/​10.1137/​S0097539796300921

[61] J. Biamonte ja V. Bergholm, Tensorivõrgud lühidalt (2017).
https://​/​doi.org/​10.48550/​arXiv.1708.00006

[62] X. Yuan, J. Sun, J. Liu, Q. Zhao ja Y. Zhou, Physical Review Letters 127, 10.1103/physrevlett.127.040501 (2021).
https://​/​doi.org/​10.1103/​physrevlett.127.040501

[63] W. Huggins, P. Patil, B. Mitchell, KB Whaley ja EM Stoudenmire, Quantum Science and Technology 4, 024001 (2019).
https://​/​doi.org/​10.1088/​2058-9565/​aaea94

[64] R. Orús, Annals of Physics 349, 117 (2014).
https://​/​doi.org/​10.1016/​j.aop.2014.06.013

[65] J. Biamonte, Loengud kvanttensorvõrkudest (2020).
https://​/​doi.org/​10.48550/​arXiv.1912.10049

[66] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas, S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen, J. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, CM Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M Harrigan, M. Hartmann, A. Ho, MR Hoffmann, T. Huang, T. Humble, S. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, JR McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen , M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, MY Niu, E. Ostby, A. Petuhhov, J. Platt, C. Quintana, EG Rieffel, P. Roushan, N. Rubin , D. Sank, KJ Satzinger, V. Smelyanskiy, KJ Sung, M. Trevithick, A. Vainsencher, B. Villalonga, T. White, ZJ Yao, P. Yeh, A. Zalcman, H. Neven ja J. Martinis , Nature 574, 505–510 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[67] YY Gao, MA Rol, S. Touzard ja C. Wang, PRX Quantum 2, 040202 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.040202

[68] D. Leibfried, R. Blatt, C. Monroe ja D. Wineland, Rev. Mod. Phys. 75, 281 (2003).
https://​/​doi.org/​10.1103/​RevModPhys.75.281

[69] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond ja C. Jurczak, Quantum 4, 327 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-21-327

[70] J. Koch, TM Yu, J. Gambetta, AA Houck, DI Schuster, J. Majer, A. Blais, MH Devoret, SM Girvin ja RJ Schoelkopf, Physical Review A 76, 10.1103/physreva.76.042319 (2007).
https://​/​doi.org/​10.1103/​physreva.76.042319

[71] BD Josephson, Phys. Lett. 1, 251 (1962).
https:/​/​doi.org/​10.1016/​0031-9163(62)91369-0

[72] T. Alexander, N. Kanazawa, DJ Egger, L. Capelluto, CJ Wood, A. Javadi-Abhari ja D. C McKay, Quantum Science and Technology 5, 044006 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​aba404

[73] H. Silvério, S. Grijalva, C. Dalyac, L. Leclerc, PJ Karalekas, N. Shammah, M. Beji, L.-P. Henry ja L. Henriet, Quantum 6, 629 (2022).
https:/​/​doi.org/​10.22331/​q-2022-01-24-629

[74] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​labone-q (2023a).
https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​labone-q

[75] L. Ella, L. Leandro, O. Wertheim, Y. Romach, R. Szmuk, Y. Knol, N. Ofek, I. Sivan ja Y. Cohen, Quantum-classical processing and benchmarking at the pulse-level (2023) ).
https://​/​doi.org/​10.48550/​arXiv.2303.03816

[76] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​ (2023a).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​

[77] M. Naghiloo, Sissejuhatus ülijuhtivate kubitidega eksperimentaalsesse kvantmõõtmisse (2019).
https://​/​doi.org/​10.48550/​arXiv.1904.09291

[78] A. Pasquale et al., qiboteam/​qibocal: Qibocal 0.0.1 (2023a).
https://​/​doi.org/​10.5281/​zenodo.7662185

[79] A. Pasquale, S. Efthymiou, S. Ramos-Calderer, J. Wilkens, I. Roth ja S. Carrazza, Avatud lähtekoodiga raamistiku poole kvantkalibreerimise ja iseloomustamise teostamiseks (2023b).
https://​/​doi.org/​10.48550/​arXiv.2303.10397

[80] M. Kliesch ja I. Roth, PRX Quantum 2, 010201 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.010201

[81] J. Emerson, R. Alicki ja K. Zyczkowski, J. Opt. B 7, S347 (2005).
https:/​/​doi.org/​10.1088/​1464-4266/​7/​10/​021

[82] E. Knill, D. Leibfried, R. Reichle, J. Britton, RB Blakestad, JD Jost, C. Langer, R. Ozeri, S. Seidelin ja DJ Wineland, Physical Review A 77, 10.1103/physreva.77.012307 ( 2008).
https://​/​doi.org/​10.1103/​physreva.77.012307

[83] B. Lévi, CC López, J. Emerson ja DG Cory, Phys. Rev. A 75, 022314 (2007).
https://​/​doi.org/​10.1103/​PhysRevA.75.022314

[84] C. Dankert, R. Cleve, J. Emerson ja E. Livine, Phys. Rev. A 80, 012304 (2009).
https://​/​doi.org/​10.1103/​PhysRevA.80.012304

[85] J. Helsen, I. Roth, E. Onorati, AH Werner ja J. Eisert, arXiv:2010.07974 3, 020357 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.020357
arXiv: 2010.07974

[86] AP jt, Ettevalmistamisel (2023).

[87] F. Motzoi, JM Gambetta, P. Rebentrost ja FK Wilhelm, Phys. Rev. Lett. 103, 110501 (2009).
https://​/​doi.org/​10.1103/​PhysRevLett.103.110501

[88] J. Heinsoo, CK Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J.-C. Besse, A. Poto čnik, A. Wallraff ja C. Eichler, Phys. Rev. Appl. 10, 034040 (2018).
https://​/​doi.org/​10.1103/​PhysRevApplied.10.034040

[89] Y. Xu, G. Huang, J. Balewski, A. Morvan, K. Nowrouzi, DI Santiago, RK Naik, B. Mitchell ja I. Siddiqi, ACM Transactions on Quantum Computing 4, 10.1145/3529397 (2022).
https://​/​doi.org/​10.1145/​3529397

[90] J. Kelly, P. O'Malley, M. Neeley, H. Neven ja JM Martinis, Physical qubit calibration on a directioned acyclic graph (2018).
https://​/​doi.org/​10.48550/​arXiv.1803.03226

[91] Qibolab: platvormi loomine, https://​/​qibo.science/​qibolab/​stable/​tutorials/​lab.html.
https://​/​qibo.science/​qibolab/​stable/​tutorials/​lab.html

[92] Qibolab: platvormi serialiseerimine, https://​/​qibo.science/​qibolab/​stable/​api-reference/​qibolab.html#module-qibolab.serialize.
https://​/​qibo.science/​qibolab/​stable/​api-reference/​qibolab.html#module-qibolab.serialize

[93] Qibolab: tulemuste vormingud, https://​/​qibo.science/​qibolab/​stable/​main-documentation/​qibolab.html#results.
https://​/​qibo.science/​qibolab/​stable/​main-documentation/​qibolab.html#results

[94] Qblox, https://​/​www.qblox.com.
https://​/​www.qblox.com

[95] QuantumMachines, https://​/​www.quantum-machines.co/​.
https://​/​www.quantum-machines.co/​

[96] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​qccs (2023b).
https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​qccs

[97] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton, C. Bradford, S. Uemura, S. Zorzetti, S. Montella, G. Cancelo, S. Sussman, A. Houck, S. Saxena, H. Arnaldi, A. Agrawal, H. Zhang, C. Ding ja DI Schuster, Review of Scientific Instruments 93, 10.1063/​5.0076249 (2022).
https://​/​doi.org/​10.1063/​5.0076249

[98] R. Carobene et al., qiboteam/​qibosoq: Qibosoq 0.0.3 (2023).
https://​/​doi.org/​10.5281/​zenodo.8126172

[99] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​getting_started/​product_overview.html#cluster.
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​getting_started/​product_overview.html#cluster

[100] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qrm_rf.html (2023b).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qrm_rf.html

[101] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm_rf.html (2023c).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm_rf.html

[102] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm.html (2023d).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm.html

[103] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​synchronization.html#synq.
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​synchronization.html#synq

[104] Qcodes, https://​/​qcodes.github.io/​Qcodes/​ (2023).
https://​/​qcodes.github.io/​Qcodes/​

[105] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​tutorials/​q1asm_tutorials.html (2023e).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​tutorials/​q1asm_tutorials.html

[106] OPX+, https://​/​www.quantum-machines.co/​products/​opx/​.
https://​/​www.quantum-machines.co/​products/​opx/​

[107] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​shfqc-qubit-controller (2023c).
https://​/​www.zhinst.com/​others/​en/​products/​shfqc-qubit-controller

[108] J. Herrmann, C. Hellings, S. Lazar, F. Pfäffli, F. Haupt, T. Thiele, DC Zanuz, GJ Norris, F. Heer, C. Eichler ja A. Wallraff, Frequency up-conversionskeems for controlling ülijuhtivad kubitid (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.02513

[109] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​hdawg-arbitrary-waveform-generator (2023d).
https://​/​www.zhinst.com/​others/​en/​products/​hdawg-arbitrary-waveform-generator

[110] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​pqsc-programmable-quantum-system-controller (2023e).
https://​/​www.zhinst.com/​others/​en/​products/​pqsc-programmable-quantum-system-controller

[111] Xilinx-(AMD), Rfsoc 4×2 spetsifikatsioonid, https://​/​www.xilinx.com/​support/​university/​xup-boards/​RFSoC4x2.html (2022a).
https://​/​www.xilinx.com/​support/​university/​xup-boards/​RFSoC4x2.html

[112] Xilinx-(AMD), Zcu111 spetsifikatsioonid, https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu111.html (2022b).
https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu111.html

[113] Xilinx-(AMD), Zcu216 spetsifikatsioonid, https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu216.html (2022c).
https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu216.html

[114] PSV Naidu, Modern Digital Signal Processing (Alpha Science International, 2003).

[115] A. Barenco, CH Bennett, R. Cleve, DP DiVincenzo, N. Margolus, P. Shor, T. Sleator, JA Smolin ja H. Weinfurter, Physical Review A 52, 3457 (1995).
https://​/​doi.org/​10.1103/​physreva.52.3457

[116] T. Ito, N. Kakimura, N. Kamiyama, Y. Kobayashi ja Y. Okamoto, Algorithmic theory of qubit routing (2023).
https://​/​doi.org/​10.48550/​arXiv.2305.02059

[117] S. Heng, D. Kim, S. Heng ja Y. Han, 2022. aastal 37. rahvusvaheline vooluringide/süsteemide, arvutite ja side tehniline konverents (ITC-CSCC) (2022), lk 1–3.
https://​/​doi.org/​10.1109/​ITC-CSCC55581.2022.9894863

[118] P. Zhu, S. Zheng, L. Wei, C. Xueyun, Z. Guan ja S. Feng, Quantum Information Processing 21 (2022).
https:/​/​doi.org/​10.1007/​s11128-022-03698-0

[119] T. Itoko, R. Raymond, T. Imamichi ja A. Matsuo, Optimization of quantum circuit mapping using gate transformation and commutation (2019).
https://​/​doi.org/​10.48550/​arXiv.1907.02686

[120] G. Vidal ja CM Dawson, Physical Review A 69, 10.1103/physreva.69.010301 (2004).
https://​/​doi.org/​10.1103/​physreva.69.010301

[121] T. Fösel, MY Niu, F. Marquardt ja L. Li, Kvantahela optimeerimine sügava tugevdamise õppimisega (2021).
https://​/​doi.org/​10.48550/​arXiv.2103.07585

[122] G. Li, Y. Ding ja Y. Xie, nisq-ajastu kvantseadmete qubit-kaardistamise probleemi lahendamine (2019).
https://​/​doi.org/​10.48550/​arXiv.1809.02573

[123] Y. Kharkov, A. Ivanova, E. Mikhantiev ja A. Kotelnikov, Arline benchmarks: Automated benchmarking platform for quantum compilers (2022).
https://​/​doi.org/​10.48550/​arXiv.2202.14025

[124] Qibolabi võrdlusalused, https://​/​github.com/​qiboteam/​qibolab-benchmarks/​tree/​v0.1.0.
https://​/​github.com/​qiboteam/​qibolab-benchmarks/​tree/​v0.1.0

[125] JF Clauser, MA Horne, A. Shimony ja RA Holt, Phys. Rev. Lett. 23, 880 (1969).
https://​/​doi.org/​10.1103/​PhysRevLett.23.880

[126] JS Bell, Physics Physique Fizika 1, 195 (1964).
https://​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[127] M. Schuld, I. Sinayskiy ja F. Petruccione, Contemporary Physics 56, 172 (2014).
https://​/​doi.org/​10.1080/​00107514.2014.964942

[128] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe ja S. Lloyd, Nature 549, 195 (2017).
https://​/​doi.org/​10.1038/​nature23474

[129] K. Mitarai, M. Negoro, M. Kitagawa ja K. Fujii, Physical Review A 98, 10.1103/​physreva.98.032309 (2018).
https://​/​doi.org/​10.1103/​physreva.98.032309

[130] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio ja P. J. Coles, Nature Reviews Physics 3, 625 (2021) ).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[131] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio ja PJ Coles, Nature Communications 12, 10.1038/s41467-021-27045-6 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-27045-6

[132] A. Pérez-Salinas, J. Cruz-Martinez, AA Alhajri ja S. Carrazza, Physical Review D 103, 10.1103/physrevd.103.034027 (2021).
https://​/​doi.org/​10.1103/​physrevd.103.034027

[133] M. Robbiati, JM Cruz-Martinez ja S. Carrazza, Tõenäosustiheduse funktsioonide määramine adiabaatilise kvantarvutusega (2023).
https://​/​doi.org/​10.48550/​arXiv.2303.11346

[134] S. Bordoni, D. Stanev, T. Santantonio ja S. Giagu, Particles 6, 297 (2023).
https://​/​doi.org/​10.3390/partticles6010016

[135] M. Robbiati, S. Efthymiou, A. Pasquale ja S. Carrazza, A quantum analytical adam decent through parameter shift rule using qibo (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.10787

[136] RD Ball, S. Carrazza, J. Cruz-Martinez, LD Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, JI Latorre, ER Nocera, RL Pearson, J. Rojo, R. Stegeman, C Schwan, M. Ubiali, C. Voisey ja M. Wilson, The European Physical Journal C 82, 10.1140/epjc/s10052-022-10328-7 (2022).
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10328-7

[137] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster ja JI Latorre, Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[138] DP Kingma ja J. Ba, Adam: Stohhastilise optimeerimise meetod (2017).
https://​/​doi.org/​10.48550/​arXiv.1412.6980

[139] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac ja N. Killoran, Physical Review A 99, 10.1103/physreva.99.032331 (2019).
https://​/​doi.org/​10.1103/​physreva.99.032331

Viidatud

[1] Jorge J. Martínez de Lejarza, Leandro Cieri, Michele Grossi, Sofia Vallecorsa ja Germán Rodrigo, "Loop Feynmani integratsioon kvantarvutis", arXiv: 2401.03023, (2024).

[2] Alessandro D'Elia, Boulos Alfakes, Anas Alkhazaleh, Leonardo Banchi, Matteo Beretta, Stefano Carrazza, Fabio Chiarello, Daniele Di Gioacchino, Andrea Giachero, Felix Henrich, Alex Stephane Piedjou Komnang, Carlo Ligi, Giovanni Maccarrone, Massimo Maccarrone Emanuele Palumbo, Andrea Pasquale, Luca Piersanti, Florent Ravaux, Alessio Rettaroli, Matteo Robbiati, Simone Tocci ja Claudio Gatti, "Transmon Qubiti iseloomustus 3D-õõnes kvantmasina õppimiseks ja footonite loendamiseks" arXiv: 2402.04322, (2024).

[3] Chunyang Ding, Martin Di Federico, Michael Hatridge, Andrew Houck, Sebastien Leger, Jeronimo Martinez, Connie Miao, David I. Schuster, Leandro Stefanazzi, Chris Stoughton, Sara Sussman, Ken Treptow, Sho Uemura, Neal Wilcer, Helin Zhang , Chao Zhou ja Gustavo Cancelo, „Eksperimentaalsed edusammud QICK-iga (Quantum Instrumentation Control Kit) ülijuhtiva kvantriistvara jaoks”, arXiv: 2311.17171, (2023).

[4] Steve Abel, Juan Carlos Criado ja Michael Spannowsky, "Närvivõrkude treenimine universaalse adiabaatilise kvantarvutiga", arXiv: 2308.13028, (2023).

[5] Matteo Robbiati, Alejandro Sopena, Andrea Papaluca ja Stefano Carrazza, "Reaalajas vigade leevendamine kvantriistvara variatsiooni optimeerimiseks", arXiv: 2311.05680, (2023).

[6] Edoardo Pedicillo, Andrea Pasquale ja Stefano Carrazza, "Masinõppe mudelite võrdlus kvantseisundite klassifitseerimiseks", arXiv: 2309.07679, (2023).

Ülaltoodud tsitaadid on pärit SAO/NASA KUULUTUSED (viimati edukalt värskendatud 2024-02-16 14:18:42). Loend võib olla puudulik, kuna mitte kõik väljaandjad ei esita sobivaid ja täielikke viiteandmeid.

On Crossrefi viidatud teenus teoste viitamise andmeid ei leitud (viimane katse 2024-02-16 14:18:40).

Ajatempel:

Veel alates Quantum Journal