Hvordan designe kvantehoppbaner via distinkte hovedligningsrepresentasjoner PlatoBlockchain Data Intelligence. Vertikalt søk. Ai.

Hvordan designe kvantehoppbaner via distinkte hovedligningsrepresentasjoner

Dariusz Chruściński1, Kimmo Luoma2,3, Jyrki Piilo3, og Andrea Smirne4,5

1Institutt for fysikk, Fakultet for fysikk, astronomi og informatikk, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Toruń, Polen
2Institut für Theoretische Physik, Technische Universität Dresden, D-01062, Dresden, Tyskland
3Turku senter for kvantefysikk, Institutt for fysikk og astronomi, Universitetet i Turku, FI-20014, Turun Yliopisto, Finland
4Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italia
5Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italia

Finn dette papiret interessant eller vil diskutere? Scite eller legg igjen en kommentar på SciRate.

Abstrakt

Enhver åpen systemdynamikk kan knyttes til uendelig mange stokastiske bilder, kalt opprettinger, som har vist seg å være ekstremt nyttige i flere sammenhenger, både fra et konseptuelt og praktisk synspunkt. Her, med fokus på kvantehoppavklaringer, demonstrerer vi at det eksisterer en iboende frihet i hvordan man kan tilordne vilkårene for den underliggende hovedligningen til de deterministiske og hoppdelene av den stokastiske beskrivelsen, noe som fører til en rekke kvalitativt forskjellige oppklaringer. Som relevante eksempler viser vi at et fast grunnlag for post-hopp tilstander kan velges under noen bestemte forhold, eller at den deterministiske evolusjonen kan settes av en valgt tidsuavhengig ikke-hermitisk Hamiltonianer, selv i nærvær av ekstern kjøring. Vår tilnærming er avhengig av definisjonen av hastighetsoperatorer, hvis positivitet utstyrer hver opptrening med et kontinuerlig måleskjema og er relatert til en lenge kjent, men så langt ikke mye brukt egenskap for å klassifisere kvantedynamikk, kjent som dissipativitet. Med utgangspunkt i formelle matematiske konsepter lar resultatene våre oss få grunnleggende innsikt i åpen kvantesystemdynamikk og berike deres numeriske simuleringer.

► BibTeX-data

► Referanser

[1] H.-P. Breuer og F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2007).
https: / / doi.org/ 10.1093 / acprof: oso / 9780199213900.001.0001

[2] HJ Carmichael, An Open System Approach to Quantum Optics, Forelesningsnotater i fysikk (Springer, Berlin, 1993).
https:/​/​doi.org/​10.1007/​978-3-540-47620-7

[3] J. Dalibard, Y. Castin og K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).
https: / / doi.org/ 10.1103 / PhysRevLett.68.580

[4] T. Basche, S. Kummer og C. Brauchle, Nature 373, 132 (1995).
https: / / doi.org/ 10.1038 / 373132a0

[5] S. Peil og G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999).
https: / / doi.org/ 10.1103 / PhysRevLett.83.1287

[6] F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev og S. Kilin, Appl. Phys. Lett. 81, 2160 (2002).
https: / / doi.org/ 10.1063 / 1.1507838

[7] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, UB Hoff, M. Brune, J.-M. Raimond og S. Haroche, Nature 446, 297 (2007).
https: / / doi.org/ 10.1038 / nature05589

[8] R. Vijay, DH Slichter og I. Siddiqi, Phys. Rev. Lett. 106, 110502 (2011).
https: / / doi.org/ 10.1103 / PhysRevLett.106.110502

[9] ZK Minev, SO Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, RJ Schoelkopf, M. Mirrahimi, HJ Carmichael og MH Devoret, Nature 570, 200 (2019).
https: / / doi.org/ 10.1038 / s41586-019-1287-z

[10] MB Plenio og PL Knight, Rev. Mod. Phys. 70, 101 (1998).
https: / / doi.org/ 10.1103 / RevModPhys.70.101

[11] AJ Daley, Adv. Phys. 63, 77 (2014).
https: / / doi.org/ 10.1080 / 00018732.2014.933502

[12] I.Percival, Quantum State Diffusion (Cambridge University Press, Cambridge, England, 2002).

[13] A. Barchielli og M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case, Lecture Notes in Physics 782 (Springer, Berlin, 2009).
https:/​/​doi.org/​10.1007/​978-3-642-01298-3

[14] HM Wiseman og GJ Milburn, Phys. Rev. A 47, 1652 (1993).
https: / / doi.org/ 10.1103 / PhysRevA.47.1652

[15] WT Strunz, L. Diósi og N. Gisin, Phys. Rev. Lett. 82, 1801 (1999).
https: / / doi.org/ 10.1103 / PhysRevLett.82.1801

[16] T. Yu, L. Diósi, N. Gisin og WT Strunz, Phys. Rev. A 60, 91 (1999).
https: / / doi.org/ 10.1103 / PhysRevA.60.91

[17] K. Luoma, WT Strunz og J. Piilo, Phys. Rev. Lett. 125, 150403 (2020).
https: / / doi.org/ 10.1103 / PhysRevLett.125.150403

[18] KW Murch, SJ Weber, C. Macklin og I. Siddiqi, Nature 502, 211 (2013).
https: / / doi.org/ 10.1038 / nature12539

[19] P. Campagne-Ibarcq, P. Six, L. Bretheau, A. Sarlette, M. Mirrahimi, P. Rouchon og B. Huard, Phys. Rev. X 6, 011002 (2016).
https: / / doi.org/ 10.1103 / PhysRevX.6.011002

[20] S. Hacohen-Gourgy, LS Martin, E. Flurin, VV Ramasesh, KB Whaley og I. Siddiqi, Nature 538, 491 (2016).
https: / / doi.org/ 10.1038 / nature19762

[21] Q. Ficheux, S. Jezouin, Z. Leghtas og B. Huard, Nat. Comm. 9, 1926 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-04372-9

[22] A. Barchielli og VP Belavkin, J. Phys. A: Matematikk. Gen. 24, 1495 (1991).
https:/​/​doi.org/​10.1088/​0305-4470/​24/​7/​022

[23] E.-M. Laine, J. Piilo og H.-P. Breuer, Phys. Rev. A 81, 062115 (2010).
https: / / doi.org/ 10.1103 / PhysRevA.81.062115

[24] D. Chrusciński, A. Kossakowski og Á. Rivas, Phys. Rev. A 83, 052128 (2011).
https: / / doi.org/ 10.1103 / PhysRevA.83.052128

[25] EN. Rivas og SF Huelga, Open Quantum Systems (Springer, New York, 2012).
https:/​/​doi.org/​10.1007/​978-3-642-23354-8

[26] EN. Rivas, SF Huelga og MB Plenio, Phys. Rev. Lett. 105, 050403 (2010).
https: / / doi.org/ 10.1103 / PhysRevLett.105.050403

[27] EN. Rivas, SF Huelga og MB Plenio, Rep. Prog. Phys. 77, 094001 (2014).
https:/​/​doi.org/​10.1088/​0034-4885/​77/​9/​094001

[28] H.-P. Breuer, E.-M. Laine og J. Piilo, Phys. Rev. Lett. 103, 210401 (2009).
https: / / doi.org/ 10.1103 / PhysRevLett.103.210401

[29] H.-P. Breuer, E.-M. Laine, J. Piilo og B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016).
https: / / doi.org/ 10.1103 / RevModPhys.88.021002

[30] J. Piilo, S. Maniscalco, K. Härkönen og KA Suominen, Phys. Rev. Lett. 100, 180402 (2008).
https: / / doi.org/ 10.1103 / PhysRevLett.100.180402

[31] J. Piilo, K. Härkönen, S. Maniscalco og KA Suominen, Phys. Rev. A 79, 062112 (2009).
https: / / doi.org/ 10.1103 / PhysRevA.79.062112

[32] J. Gambetta og HM Wiseman, Phys. Rev. A 68, 062104 (2003).
https: / / doi.org/ 10.1103 / PhysRevA.68.062104

[33] L. Diósi, fys. Rev. Lett. 100, 080401 (2008).
https: / / doi.org/ 10.1103 / PhysRevLett.100.080401

[34] HM Wiseman og JM Gambetta, Phys. Rev. Lett. 101, 140401 (2008).
https: / / doi.org/ 10.1103 / PhysRevLett.101.140401

[35] A. Smirne, M. Caiaffa og J. Piilo, Phys. Rev. Lett. 124, 190402 (2020).
https: / / doi.org/ 10.1103 / PhysRevLett.124.190402

[36] L. Diósi, fys. Lett. A 112, 288 (1985).
https:/​/​doi.org/​10.1016/​0375-9601(85)90342-1

[37] L. Diósi, fys. Lett. A 114, 451 (1986).
https:/​/​doi.org/​10.1016/​0375-9601(86)90692-4

[38] L. Diósi, J. Phys. A 21, 2885 (1988).
https:/​/​doi.org/​10.1088/​0305-4470/​21/​13/​013

[39] N. Gisin, Helv. Phys. Acta 63, 929 (1990).
https: / / doi.org/ 10.5169 / seals-116244

[40] B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, HP Breuer, New J. Phys. 13, 093004 (2011).
https:/​/​doi.org/​10.1088/​1367-2630/​13/​9/​093004

[41] D. Chruściński og S. Maniscalco, Phys. Prest Lett. 112, 120404 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.112.120404

[42] S. Wißmann, H.-P. Breuer, B. Vacchini, Phys. Rev. A 92, 042108 (2015).
https: / / doi.org/ 10.1103 / PhysRevA.92.042108

[43] HM Wiseman og GJ Milburn, Kvantemåling og kontroll (CUP, Cambridge, 2010).
https: / / doi.org/ 10.1017 / CBO9780511813948

[44] J. Zhangab, Y.-X. Liu, R.-B. Wuab, K. Jacobs og F. Nori, Phys. Rep. 679, 1 (2017).
https: / / doi.org/ 10.1016 / j.physrep.2017.02.003

[45] S. Hacohen-Gourgy, LP Garcìa-Pintos, LS Martin, J. Dressel og I. Siddiqi, Phys. Rev. Lett. 120, 020505 (2018).
https: / / doi.org/ 10.1103 / PhysRevLett.120.020505

[46] LS Martin, WP Livingston, S. Hacohen-Gourgy, HM Wiseman og I. Siddiqi, Nat. Phys. 16, 1046 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0939-0

[47] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, SG Hofer, S. Hong, N. Kiesel, A. Kugi og M. Aspelmeyer, Nature 595, 373 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03602-3

[48] G. Lindblad, Comm. Matte. Phys. 48, 119 (1976).
https: / / doi.org/ 10.1007 / BF01608499

[49] V. Gorini, A. Kossakowski og ECG Sudarshan, J. Math. Phys. 17, 821 (1976).
https: / / doi.org/ 10.1063 / 1.522979

[50] D. Chrusciński og A. Kossakowski, Phys. Rev. Lett. 104, 070406 (2010).
https: / / doi.org/ 10.1103 / PhysRevLett.104.070406

[51] M. Caiaffa, A. Smirne og A. Bassi, Phys. Rev. A 95, 062101 (2017).
https: / / doi.org/ 10.1103 / PhysRevA.95.062101

[52] TA Brun, fys. Rev. A 61, 042107 (2000).
https: / / doi.org/ 10.1103 / PhysRevA.61.042107

[53] TA Brun, Am. J. Phys. 70, 719 (2002).
https: / / doi.org/ 10.1119 / 1.1475328

[54] L. Diósi, J.Phys. A 50, 16LT01 (2017).
https: / / doi.org/ 10.1088 / 1751-8121 / aa6263

[55] MJW Hall, JD Cresser, L. Li og E. Andersson, Phys. Rev. A 89, 042120 (2014).
https: / / doi.org/ 10.1103 / PhysRevA.89.042120

[56] D. Chruściński og FA Wudarski, Phys. Rev. A 91, 012104 (2015).
https: / / doi.org/ 10.1103 / PhysRevA.91.012104

[57] N. Megier, D. Chruscinski, J. Piilo og WT Strunz, Sci. Rep. 7, 6379 (2017).
https:/​/​doi.org/​10.1038/​s41598-017-06059-5

[58] T. Heinosaari og M. Ziman, The Mathematical Language of Quantum Theory, (Cambridge University Press, Cambridge, 2012).
https: / / doi.org/ 10.1017 / CBO9781139031103

[59] HM Wiseman, Quantum Semiclass. Opt. 8, 205 (1996).
https:/​/​doi.org/​10.1088/​1355-5111/​8/​1/​015

[60] V. Paulsen, Fullstendig bundne kart og operatøralgebras (Cambridge University Press, Cambridge, 2003).
https: / / doi.org/ 10.1017 / CBO9780511546631

[61] E. Størmer, Positive Linear Maps of Operator Algebras, Springer Monographs in Mathematics (Springer, New York, 2013).
https:/​/​doi.org/​10.1007/​978-3-642-34369-8

[62] K. Mølmer og Y. Castin, Quantum Semiclass. Opt. 8, 49 (1996).
https:/​/​doi.org/​10.1088/​1355-5111/​8/​1/​007

[63] D. Chruściński og F. Mukhamedov, Phys. Rev. A. 100, 052120 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.100.052120

[64] M. Naghiloo, M. Abbasi, Yogesh N. Joglekar og KW Murch, Nat. Phys. 15, 1232 (2019).
https: / / doi.org/ 10.1038 / s41567-019-0652-z

[65] F. Minganti, A. Miranowicz, RW Chhajlany og F. Nori, Phys. Rev. A 100, 062131 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.100.062131

[66] F. Minganti, A. Miranowicz, RW Chhajlany, II Arkhipov og F. Nori, Phys. Rev. A 101, 062112 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.062112

[67] Y. Ashida, Z. Gong og M. Ueda, Adv. Phys. 69, 3 (2020).
https: / / doi.org/ 10.1080 / 00018732.2021.1876991

[68] W. Chen, M. Abbasi, YN Joglekar og KW Murch, Phys. Rev. Lett. 127, 140504 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.127.140504

[69] F. Roccati, GM Palma, F. Bagarello og F. Ciccarello Op. Syst. Inf. Dyn. 29, 2250004 (2022).
https: / / doi.org/ 10.1142 / S1230161222500044

Sitert av

[1] Dariusz Chruściński, "Dynamiske kart utenfor Markovian-regimet", arxiv: 2209.14902.

Sitatene ovenfor er fra SAO / NASA ADS (sist oppdatert vellykket 2022-10-15 02:31:03). Listen kan være ufullstendig fordi ikke alle utgivere gir passende og fullstendige sitasjonsdata.

On Crossrefs siterte tjeneste ingen data om sitering av verk ble funnet (siste forsøk 2022-10-15 02:31:01).

Tidstempel:

Mer fra Kvantejournal