Protecting coherence from the environment via Stark many-body localization in a Quantum-Dot Simulator

Protecting coherence from the environment via Stark many-body localization in a Quantum-Dot Simulator

Subhajit Sarkar1,2 and Berislav Buča3,4

1Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur-603 203, India
2Department of Chemistry and School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
3Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
4Niels Bohr International Academy, Niels Bohr Institute, Copenhagen University, Universitetsparken 5, 2100 Copenhagen, Denmark

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Semiconductor platforms are emerging as a promising architecture for storing and processing quantum information, e.g., in quantum dot spin qubits. However, charge noise coming from interactions between the electrons is a major limiting factor, along with the scalability of many qubits, for a quantum computer. We show that a magnetic field gradient can be implemented in a semiconductor quantum dot array to induce a local quantum coherent dynamical $ell-$bit exhibiting the potential to be used as logical qubits. These dynamical $ell-$bits are responsible for the model being many-body localized. We show that these dynamical $ell-$bits and the corresponding many-body localization are protected from all noises, including phonons, for sufficiently long times if electron-phonon interaction is not non-local. We further show the implementation of thermalization-based self-correcting logical gates. This thermalization-based error correction goes beyond the standard paradigm of decoherence-free and noiseless subsystems. Our work thus opens a new venue for passive quantum error correction in semiconductor-based quantum computers.

Quantum coherence is essential for various applications in physics and quantum information processing, including quantum cryptography, metrology, nanoscale thermodynamics, and energy transport in biological systems. The stable operation of qubits, the fundamental building blocks of quantum information, depends heavily on maintaining quantum coherence. However, interactions between qubits and their environment often disrupt this coherence, posing a challenge for sustained qubit operations.

Semiconductor platforms, such as quantum dot spin qubits, are emerging as promising architectures for storing and processing quantum information. Yet, they face significant challenges, particularly from charge noise and the scalability of many qubits. Our research demonstrates that implementing a magnetic field gradient in a semiconductor quantum dot array can induce local quantum coherent dynamical $ell$-bits, which have the potential to function as logical qubits.

The key finding of our study is that Stark/disorder-free many-body localization (SMBL) can be observed even in the presence of dissipation from phonons. This localization can protect the quantum coherence of a logical qubit indefinitely, introducing a novel and fundamental mechanism for implementing logical qubits in nanoscale quantum dot arrays. This discovery opens new avenues for quantum information processing, showcasing the potential for long-term coherence in practical quantum computing systems.

► BibTeX data

► References

[1] D. P. DiVincenzo and D. Loss, Quantum computers and quantum coherence, Journal of Magnetism and Magnetic Materials 200, 202 (1999).

[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).

[3] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, Adv. Opt. Photon. 12, 1012 (2020).

[4] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421, 238 (2003).

[5] P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Numerical approach for unstructured quantum key distribution, Nature Communications 7, 11712 (2016).

[6] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).

[7] N. Taniguchi, Quantum thermodynamics of nanoscale steady states far from equilibrium, Phys. Rev. B 97, 155404 (2018).

[8] M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nature Communications 4, 2059 (2013).

[9] E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, Quantum coherence in photosynthesis for efficient solar-energy conversion, Nature Physics 10, 676 (2014).

[10] E. Z. Harush and Y. Dubi, Do photosynthetic complexes use quantum coherence to increase their efficiency? probably not, Science Advances 7, eabc4631 (2021), https:/​/​​doi/​pdf/​10.1126/​sciadv.abc4631.

[11] K. Bader, D. Dengler, S. Lenz, B. Endeward, S.-D. Jiang, P. Neugebauer, and J. van Slageren, Room temperature quantum coherence in a potential molecular qubit, Nature Communications 5, 5304 (2014).

[12] N. Y. Yao, C. R. Laumann, and A. Vishwanath, Many-body localization protected quantum state transfer, arXiv preprint arXiv:1508.06995 10.48550/​ARXIV.1508.06995 (2015), arXiv:1508.06995.

[13] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015), https:/​/​​10.1146/​annurev-conmatphys-031214-014726.

[14] D. A. Abanin and Z. Papić, Recent progress in many-body localization, Annalen der Physik 529, 1700169 (2017).

[15] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenology of fully many-body-localized systems, Phys. Rev. B 90, 174202 (2014).

[16] M. Serbyn, Z. Papić, and D. A. Abanin, Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett. 111, 127201 (2013a).

[17] R. Vosk, D. A. Huse, and E. Altman, Theory of the many-body localization transition in one-dimensional systems, Phys. Rev. X 5, 031032 (2015).

[18] K. Agarwal, S. Gopalakrishnan, M. Knap, M. Müller, and E. Demler, Anomalous diffusion and griffiths effects near the many-body localization transition, Phys. Rev. Lett. 114, 160401 (2015).

[19] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system, Phys. Rev. Lett. 117, 040601 (2016).

[20] Y. Bar Lev, G. Cohen, and D. R. Reichman, Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice, Phys. Rev. Lett. 114, 100601 (2015).

[21] E. van Nieuwenburg, J. Y. Malo, A. Daley, and M. Fischer, Dynamics of many-body localization in the presence of particle loss, Quantum Science and Technology 3, 01LT02 (2017).

[22] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and U. Schneider, Signatures of many-body localization in a controlled open quantum system, Phys. Rev. X 7, 011034 (2017a).

[23] M. Žnidarič, T. c. v. Prosen, and P. Prelovšek, Many-body localization in the heisenberg $xxz$ magnet in a random field, Phys. Rev. B 77, 064426 (2008).

[24] J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109, 017202 (2012).

[25] M. Serbyn, Z. Papić, and D. A. Abanin, Universal slow growth of entanglement in interacting strongly disordered systems, Phys. Rev. Lett. 110, 260601 (2013b).

[26] F. Iemini, A. Russomanno, D. Rossini, A. Scardicchio, and R. Fazio, Signatures of many-body localization in the dynamics of two-site entanglement, Phys. Rev. B 94, 214206 (2016).

[27] By dephasing here we mean that the numerous $ell $-bits coming into the dynamics with incommensurate (random) frequencies destructively interfere with the noise dynamics rather than coherent dynamics.

[28] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y. Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler, Interferometric probes of many-body localization, Phys. Rev. Lett. 113, 147204 (2014).

[29] M. Schulz, C. A. Hooley, R. Moessner, and F. Pollmann, Stark many-body localization, Phys. Rev. Lett. 122, 040606 (2019).

[30] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Experimental probes of stark many-body localization, Phys. Rev. B 102, 054206 (2020).

[31] Q. Guo, C. Cheng, H. Li, S. Xu, P. Zhang, Z. Wang, C. Song, W. Liu, W. Ren, H. Dong, R. Mondaini, and H. Wang, Stark many-body localization on a superconducting quantum processor, Phys. Rev. Lett. 127, 240502 (2021).

[32] D. S. Bhakuni, R. Nehra, and A. Sharma, Drive-induced many-body localization and coherent destruction of stark many-body localization, Phys. Rev. B 102, 024201 (2020).

[33] D. S. Bhakuni, S. Dattagupta, and A. Sharma, Effect of noise on bloch oscillations and wannier-stark localization, Phys. Rev. B 99, 155149 (2019).

[34] Y.-Y. Wang, Z.-H. Sun, and H. Fan, Stark many-body localization transitions in superconducting circuits, Phys. Rev. B 104, 205122 (2021).

[35] P. Ribeiro, A. Lazarides, and M. Haque, Many-body quantum dynamics of initially trapped systems due to a stark potential: Thermalization versus bloch oscillations, Phys. Rev. Lett. 124, 110603 (2020).

[36] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. Hebbe Madhusudhana, I. Bloch, and M. Aidelsburger, Observing non-ergodicity due to kinetic constraints in tilted fermi-hubbard chains, Nature Communications 12, 10.1038/​s41467-021-24726-0 (2021).

[37] W. Morong, F. Liu, P. Becker, K. S. Collins, L. Feng, A. Kyprianidis, G. Pagano, T. You, A. V. Gorshkov, and C. Monroe, Observation of stark many-body localization without disorder, Nature 599, 393 (2021).

[38] E. V. H. Doggen, I. V. Gornyi, and D. G. Polyakov, Stark many-body localization: Evidence for hilbert-space shattering, Phys. Rev. B 103, L100202 (2021).

[39] J.-Y. Desaules, A. Hudomal, C. J. Turner, and Z. Papić, Proposal for realizing quantum scars in the tilted 1d fermi-hubbard model, Phys. Rev. Lett. 126, 210601 (2021).

[40] T. M. Gunawardana and B. Buča, Dynamical l-bits and persistent oscillations in stark many-body localization, Phys. Rev. B 106, L161111 (2022).

[41] B. Buca, A. Purkayastha, G. Guarnieri, M. T. Mitchison, D. Jaksch, and J. Goold, Quantum many-body attractors, arXiv 10.48550/​arXiv.2008.11166 (2020), 2008.11166 [quant-ph].

[42] B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nat Commun 10, 10.1038/​s41467-019-09757-y (2019).

[43] M. Medenjak, B. Buča, and D. Jaksch, Isolated Heisenberg magnet as a quantum time crystal, Phys. Rev. B 102, 041117 (2020a).

[44] B. Buča, Out-of-time-ordered crystals and fragmentation, Phys. Rev. Lett. 128, 100601 (2022).

[45] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and U. Schneider, Signatures of many-body localization in a controlled open quantum system, Phys. Rev. X 7, 011034 (2017b).

[46] E. Levi, M. Heyl, I. Lesanovsky, and J. P. Garrahan, Robustness of many-body localization in the presence of dissipation, Phys. Rev. Lett. 116, 237203 (2016).

[47] M. H. Fischer, M. Maksymenko, and E. Altman, Dynamics of a many-body-localized system coupled to a bath, Phys. Rev. Lett. 116, 160401 (2016).

[48] M. Žnidarič, Relaxation times of dissipative many-body quantum systems, Phys. Rev. E 92, 042143 (2015).

[49] L.-N. Wu and A. Eckardt, Bath-induced decay of stark many-body localization, Phys. Rev. Lett. 123, 030602 (2019).

[50] J. Tindall, C. S. Muñoz, B. Buča, and D. Jaksch, Quantum synchronisation enabled by dynamical symmetries and dissipation, New Journal of Physics 22, 013026 (2020).

[51] H. Alaeian and B. Buča, Exact bistability and time pseudo-crystallization of driven-dissipative fermionic lattices (2022).

[52] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).

[53] P. Zanardi and F. Rossi, Subdecoherent information encoding in a quantum-dot array, Phys. Rev. B 59, 8170 (1999).

[54] P. Zanardi and F. Rossi, Quantum information in semiconductors: Noiseless encoding in a quantum-dot array, Phys. Rev. Lett. 81, 4752 (1998).

[55] G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros, and M. Veldhorst, The germanium quantum information route, Nature Reviews Materials 6, 926 (2021).

[56] T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto, Quantum simulation of fermi-hubbard models in semiconductor quantum-dot arrays, Phys. Rev. B 78, 075320 (2008).

[57] S. Yang, X. Wang, and S. Das Sarma, Generic hubbard model description of semiconductor quantum-dot spin qubits, Phys. Rev. B 83, 161301 (2011).

[58] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. K. Vandersypen, Quantum simulation of a fermi–hubbard model using a semiconductor quantum dot array, Nature 548, 70 (2017).

[59] J. S. Van Dyke, Y. P. Kandel, H. Qiao, J. M. Nichol, S. E. Economou, and E. Barnes, Protecting quantum information in quantum dot spin chains by driving exchange interactions periodically, Phys. Rev. B 103, 245303 (2021).

[60] T. Ito, T. Otsuka, T. Nakajima, M. R. Delbecq, S. Amaha, J. Yoneda, K. Takeda, A. Noiri, G. Allison, A. Ludwig, A. D. Wieck, and S. Tarucha, Four single-spin rabi oscillations in a quadruple quantum dot, Applied Physics Letters 113, 093102 (2018), https:/​/​​10.1063/​1.5040280.

[61] U. Mukhopadhyay, J. P. Dehollain, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, A 2$times$2 quantum dot array with controllable inter-dot tunnel couplings, Applied Physics Letters 112, 183505 (2018), https:/​/​​10.1063/​1.5025928.

[62] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta, Shuttling a single charge across a one-dimensional array of silicon quantum dots, Nature Communications 10, 1063 (2019a).

[63] H. Qiao, Y. P. Kandel, K. Deng, S. Fallahi, G. C. Gardner, M. J. Manfra, E. Barnes, and J. M. Nichol, Coherent multispin exchange coupling in a quantum-dot spin chain, Phys. Rev. X 10, 031006 (2020a).

[64] A. Sigillito, J. Loy, D. Zajac, M. Gullans, L. Edge, and J. Petta, Site-selective quantum control in an isotopically enriched $^{28}mathrm{Si}/​{mathrm{si}}_{0.7}{mathrm{ge}}_{0.3}$ quadruple quantum dot, Phys. Rev. Applied 11, 061006 (2019).

[65] P. Barthelemy and L. M. K. Vandersypen, Quantum dot systems: a versatile platform for quantum simulations, Annalen der Physik 525, 808 (2013).

[66] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Few-electron quantum dots, Reports on Progress in Physics 64, 701 (2001).

[67] H. Qiao, Y. P. Kandel, J. S. V. Dyke, S. Fallahi, G. C. Gardner, M. J. Manfra, E. Barnes, and J. M. Nichol, Floquet-enhanced spin swaps, Nature Communications 12, 2142 (2021).

[68] E. Barnes, J. M. Nichol, and S. E. Economou, Stabilization and manipulation of multispin states in quantum-dot time crystals with heisenberg interactions, Phys. Rev. B 99, 035311 (2019).

[69] S. Sarkar and Y. Dubi, Signatures of discrete time-crystallinity in transport through an open fermionic chain, Communications Physics 5, 155 (2022a).

[70] S. Sarkar and Y. Dubi, Emergence and dynamical stability of a charge time-crystal in a current-carrying quantum dot simulator, Nano Letters 22, 4445 (2022b), https:/​/​​10.1021/​acs.nanolett.2c00976.

[71] K. Sacha, Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A 91, 033617 (2015).

[72] K. Seibold, R. Rota, and V. Savona, Dissipative time crystal in an asymmetric nonlinear photonic dimer, Phys. Rev. A 101, 033839 (2020).

[73] Z. Zhang, D. Dreon, T. Esslinger, D. Jaksch, B. Buca, and T. Donner, Tunable non-equilibrium phase transitions between spatial and temporal order through dissipation (2022).

[74] L. R. Bakker, M. S. Bahovadinov, D. V. Kurlov, V. Gritsev, A. K. Fedorov, and D. O. Krimer, Driven-dissipative time crystalline phases in a two-mode bosonic system with kerr nonlinearity (2022).

[75] G. Granger, D. Taubert, C. E. Young, L. Gaudreau, A. Kam, S. A. Studenikin, P. Zawadzki, D. Harbusch, D. Schuh, W. Wegscheider, Z. R. Wasilewski, A. A. Clerk, S. Ludwig, and A. S. Sachrajda, Quantum interference and phonon-mediated back-action in lateral quantum-dot circuits, Nature Physics 8, 522 (2012).

[76] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The hubbard hamiltonian and its symmetries, in The One-Dimensional Hubbard Model (Cambridge University Press, 2005) p. 20–49.

[77] R. Kotlyar, C. A. Stafford, and S. Das Sarma, Addition spectrum, persistent current, and spin polarization in coupled quantum dot arrays: Coherence, correlation, and disorder, Phys. Rev. B 58, 3989 (1998).

[78] K. Seetharam, A. Lerose, R. Fazio, and J. Marino, Dynamical scaling of correlations generated by short- and long-range dissipation, Phys. Rev. B 105, 184305 (2022).

[79] J. Marino, Universality class of ising critical states with long-range losses, Phys. Rev. Lett. 129, 050603 (2022).

[80] S. Uno, N. Mori, K. Nakazato, N. Koshida, and H. Mizuta, Electron-phonon interaction in si quantum dots interconnected with thin oxide layers, in AIP Conference Proceedings, Vol. 772 (American Institute of Physics, 2005) pp. 797–798.

[81] M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha, Electrically driven single-electron spin resonance in a slanting zeeman field, Nature Physics 4, 776 (2008).

[82] W. Jang, J. Kim, M.-K. Cho, H. Chung, S. Park, J. Eom, V. Umansky, Y. Chung, and D. Kim, Robust energy-selective tunneling readout of singlet-triplet qubits under large magnetic field gradient, npj Quantum Information 6, 1 (2020).

[83] F. Ginzel, A. R. Mills, J. R. Petta, and G. Burkard, Spin shuttling in a silicon double quantum dot, Phys. Rev. B 102, 195418 (2020).

[84] G. Zhang, Y. Liu, J. J. Raftery, and A. A. Houck, Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit, npj Quantum Information 3, 1 (2017).

[85] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization, Nature Physics 5, 903 (2009).

[86] H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A. Yacoby, Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath, Phys. Rev. Lett. 105, 216803 (2010).

[87] S. Bosco, B. Hetényi, and D. Loss, Hole spin qubits in $mathrm{Si}$ finfets with fully tunable spin-orbit coupling and sweet spots for charge noise, PRX Quantum 2, 010348 (2021).

[88] F. N. M. Froning, L. C. Camenzind, O. A. H. van der Molen, A. Li, E. P. A. M. Bakkers, D. M. Zumbühl, and F. R. Braakman, Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality, Nature Nanotechnology 16, 308 (2021).

[89] H. Qiao, Y. P. Kandel, S. K. Manikandan, A. N. Jordan, S. Fallahi, G. C. Gardner, M. J. Manfra, and J. M. Nichol, Conditional teleportation of quantum-dot spin states, Nature communications 11, 1 (2020b).

[90] A. Mills, D. Zajac, M. Gullans, F. Schupp, T. Hazard, and J. Petta, Shuttling a single charge across a one-dimensional array of silicon quantum dots, Nature communications 10, 1 (2019b).

[91] S. Sarkar and Y. Dubi, Environment-assisted and environment-hampered efficiency at maximum power in a molecular photocell, The Journal of Physical Chemistry C 124, 15115 (2020).

[92] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309, 2180 (2005), https:/​/​​doi/​pdf/​10.1126/​science.1116955.

[93] F. Hébert, B. Xiao, V. G. Rousseau, R. T. Scalettar, and G. G. Batrouni, One-dimensional hubbard-holstein model with finite-range electron-phonon coupling, Phys. Rev. B 99, 075108 (2019).

[94] P. M. Dee, J. Coulter, K. G. Kleiner, and S. Johnston, Relative importance of nonlinear electron-phonon coupling and vertex corrections in the holstein model, Communications Physics 3, 145 (2020).

[95] M. Medenjak, T. Prosen, and L. Zadnik, Rigorous bounds on dynamical response functions and time-translation symmetry breaking, SciPost Physics 9 (2020b).

[96] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers, A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems, Communications in Mathematical Physics 354, 809–827 (2017).

[97] D. V. Else, B. Bauer, and C. Nayak, Prethermal phases of matter protected by time-translation symmetry, Phys. Rev. X 7, 011026 (2017).

[98] F. Machado, D. V. Else, G. D. Kahanamoku-Meyer, C. Nayak, and N. Y. Yao, Long-range prethermal phases of nonequilibrium matter, Phys. Rev. X 10, 011043 (2020).

[99] W. D. Roeck, F. Huveneers, B. Meeus, and O. A. Prośniak, Rigorous and simple results on very slow thermalization, or quasi-localization, of the disordered quantum chain (2023), arXiv:2308.08462 [math-ph].

[100] P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79, 3306 (1997).

[101] E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000a).

[102] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).

[103] V. V. Albert, B. Bradlyn, M. Fraas, and L. Jiang, Geometry and response of lindbladians, Phys. Rev. X 6, 041031 (2016).

[104] B. Buca, C. Booker, and D. Jaksch, Algebraic Theory of Quantum Synchronization and Limit Cycles under Dissipation, SciPost Phys. 12, 97 (2022).

[105] M. Mierzejewski, P. Prelovšek, and T. c. v. Prosen, Identifying local and quasilocal conserved quantities in integrable systems, Phys. Rev. Lett. 114, 140601 (2015).

[106] B. Buča, Unified theory of local quantum many-body dynamics: Eigenoperator thermalization theorems, Phys. Rev. X 13, 031013 (2023).

[107] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Advances in Physics 65, 239 (2016).

[108] Note that this new effective Ising Hamiltonian is constructed from the dynamical $ell -$bit operators.

[109] J. A. Jones, Robust ising gates for practical quantum computation, Phys. Rev. A 67, 012317 (2003).

[110] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).

[111] R. Li, F. E. Hudson, A. S. Dzurak, and A. R. Hamilton, Pauli spin blockade of heavy holes in a silicon double quantum dot, Nano Letters 15, 7314 (2015), pMID: 26434407, https:/​/​​10.1021/​acs.nanolett.5b02561.

[112] J. Oitmaa and A. M. A. von Brasch, Spin-1 ising model in a transverse crystal field, Phys. Rev. B 67, 172402 (2003).

[113] A. J. Heinrich, W. D. Oliver, L. M. K. Vandersypen, A. Ardavan, R. Sessoli, D. Loss, A. B. Jayich, J. Fernandez-Rossier, A. Laucht, and A. Morello, Quantum-coherent nanoscience, Nature Nanotechnology 16, 1318 (2021).

[114] R. A. Santos, F. Iemini, A. Kamenev, and Y. Gefen, A possible route towards dissipation-protected qubits using a multidimensional dark space and its symmetries, Nature Communications 11, 5899 (2020).

[115] R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, Information-preserving structures: A general framework for quantum zero-error information, Phys. Rev. A 82, 062306 (2010).

[116] E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000b).

[117] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta, Semiconductor spin qubits, Rev. Mod. Phys. 95, 025003 (2023), publisher: American Physical Society.

[118] V. N. Ciriano-Tejel, M. A. Fogarty, S. Schaal, L. Hutin, B. Bertrand, L. Ibberson, M. F. Gonzalez-Zalba, J. Li, Y.-M. Niquet, M. Vinet, and J. J. Morton, Spin Readout of a CMOS Quantum Dot by Gate Reflectometry and Spin-Dependent Tunneling, PRX Quantum 2, 010353 (2021).

[119] G. Oakes, V. Ciriano-Tejel, D. Wise, M. Fogarty, T. Lundberg, C. Lainé, S. Schaal, F. Martins, D. Ibberson, L. Hutin, B. Bertrand, N. Stelmashenko, J. Robinson, L. Ibberson, A. Hashim, I. Siddiqi, A. Lee, M. Vinet, C. Smith, J. Morton, and M. Gonzalez-Zalba, Fast High-Fidelity Single-Shot Readout of Spins in Silicon Using a Single-Electron Box, Phys. Rev. X 13, 011023 (2023), publisher: American Physical Society.

Cited by

[1] Shuo Liu, Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, “Discrete Time Crystal Enabled by Stark Many-Body Localization”, Physical Review Letters 130 12, 120403 (2023).

[2] Xingjian He, Rozhin Yousefjani, and Abolfazl Bayat, “Stark Localization as a Resource for Weak-Field Sensing with Super-Heisenberg Precision”, Physical Review Letters 131 1, 010801 (2023).

[3] Juan José Mendoza-Arenas and Stephen R. Clark, “Giant Rectification in Strongly Interacting Driven Tilted Systems”, PRX Quantum 5 1, 010341 (2024).

[4] Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, Martin J. Savage, and Pavel Lougovski, “Simulating Heisenberg interactions in the Ising model with strong drive fields”, Physical Review A 108 4, 042216 (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-07-05 15:17:09). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2024-07-05 15:17:08).

Time Stamp:

More from Quantum Journal