1Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
2Institute for Quantum Optics and Quantum Information (IQOQI-Vienna), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
3Institute for Theoretical Physics, ETH Zurich, Switzerland
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Since their first introduction, Quantum Reference Frame (QRF) transformations have been extensively discussed, generalising the covariance of physical laws to the quantum domain. Despite important progress, a formulation of QRF transformations for Lorentz symmetry is still lacking. The present work aims to fill this gap. We first introduce a reformulation of relativistic quantum mechanics independent of any notion of preferred temporal slicing. Based on this, we define transformations that switch between the perspectives of different relativistic QRFs. We introduce a notion of ”quantum Lorentz transformations” and ”superposition of Lorentz boosts”, acting on the external degrees of freedom of a quantum particle. We analyse two effects, superposition of time dilations and superposition of length contractions, that arise only if the reference frames exhibit both relativistic and quantum-mechanical features. Finally, we discuss how the effects could be observed by measuring the wave-packet extensions from relativistic QRFs.
► BibTeX data
► References
[1] Y. Aharonov and T. Kaufherr. Quantum frames of reference. Phys. Rev. D, 30: 368–385, Jul 1984. 10.1103/PhysRevD.30.368. URL https://doi.org/10.1103/PhysRevD.30.368.
https://doi.org/10.1103/PhysRevD.30.368
[2] C Rovelli. Quantum reference systems. Classical and Quantum Gravity, 8 (2): 317–331, feb 1991. 10.1088/0264-9381/8/2/012. URL https://doi.org/10.1088/0264-9381/8/2/012.
https://doi.org/10.1088/0264-9381/8/2/012
[3] Alexei Kitaev, Dominic Mayers, and John Preskill. Superselection rules and quantum protocols. Phys. Rev. A, 69: 052326, May 2004. 10.1103/PhysRevA.69.052326. URL https://doi.org/10.1103/PhysRevA.69.052326.
https://doi.org/10.1103/PhysRevA.69.052326
[4] Stephen D. Bartlett, Terry Rudolph, and Robert W. Spekkens. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 79: 555–609, Apr 2007a. 10.1103/RevModPhys.79.555. URL https://doi.org/10.1103/RevModPhys.79.555.
https://doi.org/10.1103/RevModPhys.79.555
[5] Gilad Gour and Robert W Spekkens. The resource theory of quantum reference frames: manipulations and monotones. New Journal of Physics, 10 (3): 033023, 2008. 10.1088/1367-2630/10/3/033023. URL https://dx.doi.org/10.1088/1367-2630/10/3/033023.
https://doi.org/10.1088/1367-2630/10/3/033023
[6] Florian Girelli and David Poulin. Quantum reference frames and deformed symmetries. Phys. Rev. D, 77: 104012, May 2008. 10.1103/PhysRevD.77.104012. URL https://doi.org/10.1103/PhysRevD.77.104012.
https://doi.org/10.1103/PhysRevD.77.104012
[7] Stephen D. Bartlett, Terry Rudolph, and Robert W. Spekkens. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 79: 555–609, Apr 2007b. 10.1103/RevModPhys.79.555. URL https://doi.org/10.1103/RevModPhys.79.555.
https://doi.org/10.1103/RevModPhys.79.555
[8] Renato M Angelo, Nicolas Brunner, Sandu Popescu, Anthony J Short, and Paul Skrzypczyk. Physics within a quantum reference frame. Journal of Physics A: Mathematical and Theoretical, 44 (14): 145304, 2011. https://doi.org/10.1088/1751-8113/44/14/145304.
https://doi.org/10.1088/1751-8113/44/14/145304
[9] RM Angelo and AD Ribeiro. Kinematics and dynamics in noninertial quantum frames of reference. Journal of Physics A: Mathematical and Theoretical, 45 (46): 465306, 2012. 10.1088/1751-8113/45/46/465306.
https://doi.org/10.1088/1751-8113/45/46/465306
[10] Matthew C. Palmer, Florian Girelli, and Stephen D. Bartlett. Changing quantum reference frames. Phys. Rev. A, 89: 052121, May 2014. 10.1103/PhysRevA.89.052121. URL https://doi.org/10.1103/PhysRevA.89.052121.
https://doi.org/10.1103/PhysRevA.89.052121
[11] Jacques Pienaar. A relational approach to quantum reference frames for spins. January 2016.
[12] Alexander R. H. Smith, Marco Piani, and Robert B. Mann. Quantum reference frames associated with noncompact groups: The case of translations and boosts and the role of mass. Phys. Rev. A, 94: 012333, Jul 2016. 10.1103/PhysRevA.94.012333. URL https://doi.org/10.1103/PhysRevA.94.012333.
https://doi.org/10.1103/PhysRevA.94.012333
[13] Takayuki Miyadera, Leon Loveridge, and Paul Busch. Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off. Journal of Physics A: Mathematical and Theoretical, 49 (18): 185301, 2016. 10.1088/1751-8113/49/18/185301.
https://doi.org/10.1088/1751-8113/49/18/185301
[14] Leon Loveridge, Paul Busch, and Takayuki Miyadera. Relativity of quantum states and observables. EPL (Europhysics Letters), 117 (4): 40004, 2017. 10.1209/0295-5075/117/40004.
https://doi.org/10.1209/0295-5075/117/40004
[15] Alessio Belenchia, Robert M. Wald, Flaminia Giacomini, Esteban Castro-Ruiz, Časlav Brukner, and Markus Aspelmeyer. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D, 98: 126009, Dec 2018. 10.1103/PhysRevD.98.126009. URL https://doi.org/10.1103/PhysRevD.98.126009.
https://doi.org/10.1103/PhysRevD.98.126009
[16] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nature Commun., 10 (1): 494, 2019a. 10.1038/s41467-018-08155-0.
https://doi.org/10.1038/s41467-018-08155-0
[17] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner. Relativistic quantum reference frames: The operational meaning of spin. Phys. Rev. Lett., 123: 090404, Aug 2019b. 10.1103/PhysRevLett.123.090404. URL https://doi.org/10.1103/PhysRevLett.123.090404.
https://doi.org/10.1103/PhysRevLett.123.090404
[18] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner. Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems. Nature Communications, 11 (1): 2672, 2020a. 10.1038/s41467-020-16013-1. URL https://doi.org/10.1038/s41467-020-16013-1.
https://doi.org/10.1038/s41467-020-16013-1
[19] Augustin Vanrietvelde, Philipp A. Hoehn, Flaminia Giacomini, and Esteban Castro-Ruiz. A change of perspective: switching quantum reference frames via a perspective-neutral framework. Quantum, 4: 225, January 2020. ISSN 2521-327X. 10.22331/q-2020-01-27-225. URL https://doi.org/10.22331/q-2020-01-27-225.
https://doi.org/10.22331/q-2020-01-27-225
[20] Augustin Vanrietvelde, Philipp A. Hoehn, and Flaminia Giacomini. Switching quantum reference frames in the N-body problem and the absence of global relational perspectives. September 2018. 10.22331/q-2023-08-22-1088. URL https://doi.org/10.22331/q-2023-08-22-1088.
https://doi.org/10.22331/q-2023-08-22-1088
[21] Luis C. Barbado, Esteban Castro-Ruiz, Luca Apadula, and Časlav Brukner. Unruh effect for detectors in superposition of accelerations. Phys. Rev. D, 102: 045002, Aug 2020. 10.1103/PhysRevD.102.045002. URL https://doi.org/10.1103/PhysRevD.102.045002.
https://doi.org/10.1103/PhysRevD.102.045002
[22] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner. Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems. Nature communications, 11 (1): 1–12, 2020b. https://doi.org/10.1038/s41467-020-16013-1.
https://doi.org/10.1038/s41467-020-16013-1
[23] Flaminia Giacomini and Časlav Brukner. Einstein’s equivalence principle for superpositions of gravitational fields and quantum reference frames. 2020. URL https://arxiv.org/abs/2012.13754.
arXiv:2012.13754
[24] Anne-Catherine de la Hamette, Viktoria Kabel, Esteban Castro-Ruiz, and Časlav Brukner. Falling through masses in superposition: quantum reference frames for indefinite metrics. 2021a. URL https://doi.org/10.1038/s42005-023-01344-4. 10.1038/s42005-023-01344-4.
https://doi.org/10.1038/s42005-023-01344-4
[25] Carlo Cepollaro and Flaminia Giacomini. Quantum generalisation of einstein’s equivalence principle can be verified with entangled clocks as quantum reference frames. 2021. URL https://arxiv.org/abs/2112.03303.
arXiv:2112.03303
[26] Anne-Catherine de la Hamette, Thomas D. Galley, Philipp A. Hoehn, Leon Loveridge, and Markus P. Mueller. Perspective-neutral approach to quantum frame covariance for general symmetry groups. 2021b. URL https://arxiv.org/abs/2110.13824.
arXiv:2110.13824
[27] Philipp A Höhn, Marius Krumm, and Markus P Müller. Internal quantum reference frames for finite abelian groups. Journal of Mathematical Physics, 63 (11): 112207, 2022. URL https://doi.org/10.1063/5.0088485.
https://doi.org/10.1063/5.0088485
[28] Philipp A Höhn, Alexander RH Smith, and Maximilian PE Lock. Equivalence of approaches to relational quantum dynamics in relativistic settings. Frontiers in Physics, page 181, 2021. 10.3389/fphy.2021.587083.
https://doi.org/10.3389/fphy.2021.587083
[29] Philipp A. Höhn, Alexander R. H. Smith, and Maximilian P. E. Lock. Trinity of relational quantum dynamics. Phys. Rev. D, 104: 066001, Sep 2021. 10.1103/PhysRevD.104.066001. URL https://doi.org/10.1103/PhysRevD.104.066001.
https://doi.org/10.1103/PhysRevD.104.066001
[30] Esteban Castro-Ruiz and Ognyan Oreshkov. Relative subsystems and quantum reference frame transformations. 2021. URL https://arxiv.org/abs/2110.13199.
arXiv:2110.13199
[31] Flaminia Giacomini. Spacetime Quantum Reference Frames and superpositions of proper times. Quantum, 5: 508, July 2021. ISSN 2521-327X. 10.22331/q-2021-07-22-508. URL https://doi.org/10.22331/q-2021-07-22-508.
https://doi.org/10.22331/q-2021-07-22-508
[32] Flaminia Giacomini and Časlav Brukner. Quantum superposition of spacetimes obeys einstein’s equivalence principle. AVS Quantum Science, 4 (1): 015601, mar 2022. 10.1116/5.0070018. URL https://doi.org/10.1116.
https://doi.org/10.1116/5.0070018
[33] Flaminia Giacomini and Achim Kempf. Second-quantized unruh-dewitt detectors and their quantum reference frame transformations. Phys. Rev. D, 105: 125001, Jun 2022. 10.1103/PhysRevD.105.125001. URL https://doi.org/10.1103/PhysRevD.105.125001.
https://doi.org/10.1103/PhysRevD.105.125001
[34] Viktoria Kabel, Anne-Catherine de la Hamette, Esteban Castro-Ruiz, and Časlav Brukner. Quantum conformal symmetries for spacetimes in superposition. 2022. URL https://arxiv.org/abs/2207.00021.
arXiv:2207.00021
[35] Michael Reisenberger and Carlo Rovelli. Spacetime states and covariant quantum theory. Phys. Rev. D, 65: 125016, Jun 2002. 10.1103/PhysRevD.65.125016. URL https://doi.org/10.1103/PhysRevD.65.125016.
https://doi.org/10.1103/PhysRevD.65.125016
[36] Donald Marolf and Carlo Rovelli. Relativistic quantum measurement. Phys. Rev. D, 66: 023510, Jul 2002. 10.1103/PhysRevD.66.023510. URL https://doi.org/10.1103/PhysRevD.66.023510.
https://doi.org/10.1103/PhysRevD.66.023510
[37] Carlo Rovelli. Relational quantum mechanics. International Journal of Theoretical Physics, 35 (8): 1637–1678, aug 1996. 10.1007/bf02302261. URL https://doi.org/10.10072Fbf02302261.
https://doi.org/10.1007/bf02302261
[38] Anne-Catherine de la Hamette and Thomas D. Galley. Quantum reference frames for general symmetry groups. Quantum, 4: 367, November 2020. ISSN 2521-327X. 10.22331/q-2020-11-30-367. URL http://dx.doi.org/10.22331/q-2020-11-30-367.
https://doi.org/10.22331/q-2020-11-30-367
[39] Titouan Carette, Jan Głowacki, and Leon Loveridge. Operational quantum reference frame transformations, 2023.
[40] Alexander R. H. Smith and Mehdi Ahmadi. Quantum clocks observe classical and quantum time dilation. Nature Communications, 11 (1): 5360, 2020. 10.1038/s41467-020-18264-4. URL https://doi.org/10.1038/s41467-020-18264-4.
https://doi.org/10.1038/s41467-020-18264-4
[41] Piotr T. Grochowski, Alexander R. H. Smith, Andrzej Dragan, and Kacper Dębski. Quantum time dilation in atomic spectra. Phys. Rev. Res., 3: 023053, Apr 2021. 10.1103/PhysRevResearch.3.023053. URL https://doi.org/10.1103/PhysRevResearch.3.023053.
https://doi.org/10.1103/PhysRevResearch.3.023053
[42] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, 2022. URL https://doi.org/10.1088/1367-2630/acb793.
https://doi.org/10.1088/1367-2630/acb793
[43] Marion Mikusch, Luis C. Barbado, and Časlav Brukner. Transformation of spin in quantum reference frames. Phys. Rev. Res., 3: 043138, Nov 2021. 10.1103/PhysRevResearch.3.043138. URL https://doi.org/10.1103/PhysRevResearch.3.043138.
https://doi.org/10.1103/PhysRevResearch.3.043138
[44] Steven Weinberg. RELATIVISTIC QUANTUM MECHANICS, volume 1, page 49–106. Cambridge University Press, 1995. 10.1017/CBO9781139644167.004.
https://doi.org/10.1017/CBO9781139644167.004
[45] Rafael D Sorkin. Impossible measurements on quantum fields, volume 2, pages 293–305. 1993. URL https://arxiv.org/abs/gr-qc/9302018.
https://arxiv.org/abs/gr-qc/9302018
[46] David B Malament. In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In Perspectives on quantum reality, pages 1–10. Springer, 1996. 10.1007/978-94-015-8656-6_1. URL https://doi.org/10.1007/978-94-015-8656-6_1.
https://doi.org/10.1007/978-94-015-8656-6_1
[47] Paul Busch. Unsharp localization and causality in relativistic quantum theory. Journal of Physics A: Mathematical and General, 32 (37): 6535–6546, sep 1999. 10.1088/0305-4470/32/37/305. URL https://doi.org/10.1088.
https://doi.org/10.1088/0305-4470/32/37/305
[48] A. S. Wightman. On the localizability of quantum mechanical systems. Rev. Mod. Phys., 34: 845–872, 1962. 10.1103/RevModPhys.34.845.
https://doi.org/10.1103/RevModPhys.34.845
[49] Don N. Page and William K. Wootters. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D, 27: 2885–2892, Jun 1983. 10.1103/PhysRevD.27.2885. URL https://doi.org/10.1103/PhysRevD.27.2885.
https://doi.org/10.1103/PhysRevD.27.2885
[50] N. L. Diaz and R. Rossignoli. History state formalism for dirac’s theory. Phys. Rev. D, 99: 045008, Feb 2019. 10.1103/PhysRevD.99.045008. URL https://doi.org/10.1103/PhysRevD.99.045008.
https://doi.org/10.1103/PhysRevD.99.045008
[51] N. L. Diaz, J. M. Matera, and R. Rossignoli. History state formalism for scalar particles. Phys. Rev. D, 100: 125020, Dec 2019. 10.1103/PhysRevD.100.125020. URL https://doi.org/10.1103/PhysRevD.100.125020.
https://doi.org/10.1103/PhysRevD.100.125020
Cited by
[1] Matthew J. Lake and Marek Miller, “Quantum reference frames, revisited”, arXiv:2312.03811, (2023).
[2] Viktoria Kabel, Anne-Catherine de la Hamette, Luca Apadula, Carlo Cepollaro, Henrique Gomes, Jeremy Butterfield, and Časlav Brukner, “Identification is Pointless: Quantum Reference Frames, Localisation of Events, and the Quantum Hole Argument”, arXiv:2402.10267, (2024).
[3] Viktoria Kabel, Časlav Brukner, and Wolfgang Wieland, “Quantum reference frames at the boundary of spacetime”, Physical Review D 108 10, 106022 (2023).
[4] Shadi Ali Ahmad, Wissam Chemissany, Marc S. Klinger, and Robert G. Leigh, “Quantum Reference Frames from Top-Down Crossed Products”, arXiv:2405.13884, (2024).
[5] Carlo Cepollaro, Ali Akil, Paweł Cieśliński, Anne-Catherine de la Hamette, and Časlav Brukner, “The sum of entanglement and subsystem coherence is invariant under quantum reference frame transformations”, arXiv:2406.19448, (2024).
The above citations are from SAO/NASA ADS (last updated successfully 2024-08-14 13:54:01). The list may be incomplete as not all publishers provide suitable and complete citation data.
Could not fetch Crossref cited-by data during last attempt 2024-08-14 13:54:00: Could not fetch cited-by data for 10.22331/q-2024-08-14-1440 from Crossref. This is normal if the DOI was registered recently.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://quantum-journal.org/papers/q-2024-08-14-1440/
- :is
- :not
- ][p
- 01
- 1
- 10
- 100
- 11
- 117
- 12
- 123
- 13
- 14
- 15%
- 16
- 17
- 19
- 1984
- 1995
- 1996
- 1999
- 20
- 2000
- 2004
- 2008
- 2011
- 2012
- 2014
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 22
- 225
- 23
- 24
- 25
- 26%
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 35%
- 36
- 367
- 37
- 39
- 40
- 41
- 43
- 49
- 50
- 51
- 54
- 65
- 66
- 69
- 7
- 77
- 8
- 89
- 9
- 98
- a
- above
- absence
- Absolute
- ABSTRACT
- Academy
- access
- achim
- acting
- Ad
- affiliations
- aims
- Alexander
- All
- alt
- analyse
- and
- Anthony
- any
- approach
- approaches
- apr
- ARE
- argument
- arise
- AS
- associated
- At
- atomic
- attempt
- Aug
- austrian
- author
- authors
- based
- BE
- been
- between
- boosts
- both
- boundary
- Break
- busch
- by
- cambridge
- CAN
- cannot
- case
- change
- changing
- Clocks
- comment
- Commons
- Communications
- complete
- copyright
- could
- Crossed
- data
- David
- de
- dec
- Defense
- define
- described
- Despite
- different
- discuss
- discussed
- domain
- dominic
- don
- donald
- during
- dynamics
- e
- effect
- effects
- einstein
- entangled
- entanglement
- equivalence
- ETH
- events
- evolution
- exhibit
- extensions
- extensively
- external
- Falling
- Features
- Feb
- Fields
- fill
- Finally
- First
- For
- FRAME
- Framework
- Freedom
- from
- Frontiers
- gap
- General
- Global
- gravitational
- gravity
- Group’s
- harvard
- Have
- High
- history
- holders
- Hole
- How
- http
- HTTPS
- Identification
- if
- important
- impossible
- in
- independent
- information
- institutions
- interesting
- internal
- International
- introduce
- Introduction
- Jan
- January
- JavaScript
- jeremy
- John
- journal
- jpg
- July
- lacking
- lake
- Last
- Laws
- Leave
- Length
- License
- List
- Localization
- lock
- manipulations
- mar
- marc
- Marco
- Mass
- masses
- massive
- mathematical
- matthew
- max-width
- May..
- meaning
- measurement
- measurements
- measuring
- mechanical
- mechanics
- Metrics
- Michael
- Miller
- Month
- Nature
- New
- Nicolas
- normal
- Notion
- nov
- November
- objects
- observe
- of
- on
- only
- open
- operational
- optics
- or
- original
- P&E
- page
- pages
- Palmer
- Paper
- Paul
- perspective
- perspectives
- physical
- Physics
- plato
- Plato Data Intelligence
- PlatoData
- pointless
- preferred
- presence
- present
- press
- principle
- Problem
- Products
- Progress
- proper
- protocols
- provide
- published
- publisher
- publishers
- Qi
- Quantum
- quantum information
- quantum measurement
- Quantum Mechanics
- Quantum optics
- quantum superposition
- quantum systems
- R
- Rafael
- Reality
- recently
- reference
- references
- registered
- relative
- relativity
- remains
- resource
- review
- ROBERT
- Role
- rules
- s
- Science
- SCIENCES
- Second
- September
- settings
- Short
- smith
- Spin
- spins
- State
- States
- Stephen
- steven
- Still
- Successfully
- such
- suitable
- superposition
- Switch
- Systems
- that
- The
- their
- theoretical
- theory
- There.
- this
- thomas
- Through
- time
- times
- Title
- to
- Transformation
- transformations
- Trinity
- two
- under
- university
- updated
- URL
- verified
- via
- volume
- W
- want
- was
- we
- why
- william
- with
- within
- without
- Work
- year
- zephyrnet
- Zurich