Statistical time-domain characterization of non-periodic optical clocks PlatoBlockchain Data Intelligence. Vertical Search. Ai.

Statistical time-domain characterization of non-periodic optical clocks

Dario Cilluffo

Institute of Theoretical Physics & IQST, Ulm University, Albert-Einstein-Allee 11 89081, Ulm, Germany
Universit$grave{a}$ degli Studi di Palermo, Dipartimento di Fisica e Chimica РEmilio Segr̬, via Archirafi 36, I-90123 Palermo, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Measuring time means counting the occurrence of periodic phenomena. Over the past centuries a major effort was put to make stable and precise oscillators to be used as clock regulators. Here we consider a different class of clocks based on stochastic clicking processes. We provide a rigorous statistical framework to study the performances of such devices and apply our results to a single coherently driven two-level atom under photodetection as an extreme example of non-periodic clock. Quantum Jump MonteCarlo simulations and photon counting waiting time distribution will provide independent checks on the main results.

Using a simplified optical model, we show that the large deviation formalism of quantum trajectories can be easily exploited to study the performances of a particular class of clocks relying on stochastic clicking processes. The proof of principle presented here provides a clear application of thermodynamics of quantum trajectories to practical problems and, at the same time, it suggests further connections with metrology.

â–º BibTeX data

â–º References

[1] G. W. Ford. “The fluctuation-dissipation theorem”. Contemporary Physics 58, 244–252 (2017).
https:/​/​doi.org/​10.1080/​00107514.2017.1298289

[2] Henry Reginald Arnulph Mallock. “Pendulum clocks and their errors”. Proceeding of the Royal Society A 85 (1911).
https:/​/​doi.org/​10.1098/​rspa.1911.0064

[3] M Kesteven. “On the mathematical theory of clock escapements”. American Journal of Physics 46, 125–129 (1978).

[4] Peter Hoyng. “Dynamics and performance of clock pendulums”. American Journal of Physics 82, 1053–1061 (2014).
https:/​/​doi.org/​10.1119/​1.4891667

[5] S. Ghosh, F. Sthal, J. Imbaud, M. Devel, R. Bourquin, C. Vuillemin, A. Bakir, N. Cholley, P. Abbe, D. Vernier, and G. Cibiel. “Theoretical and experimental investigations of 1/​f noise in quartz crystal resonators”. 2013 Joint European Frequency and Time Forum International Frequency Control Symposium (EFTF/​IFC)Pages 737–740 (2013).
https:/​/​doi.org/​10.1109/​EFTF-IFC.2013.6702262

[6] G. J. Milburn. “The thermodynamics of clocks”. Contemporary Physics 61, 69–95 (2020).
https:/​/​doi.org/​10.1080/​00107514.2020.1837471

[7] Paul Erker, Mark T. Mitchison, Ralph Silva, Mischa P. Woods, Nicolas Brunner, and Marcus Huber. “Autonomous quantum clocks: Does thermodynamics limit our ability to measure time?”. Phys. Rev. X 7, 031022 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.031022

[8] Mischa P. Woods. “Autonomous ticking clocks from axiomatic principles”. Quantum 5, 381 (2021).
https:/​/​doi.org/​10.22331/​q-2021-01-17-381

[9] A. N. Pearson, Y. Guryanova, P. Erker, E. A. Laird, G. A. D. Briggs, M. Huber, and N. Ares. “Measuring the thermodynamic cost of timekeeping”. Phys. Rev. X 11, 021029 (2021).
https:/​/​doi.org/​10.1103/​PhysRevX.11.021029

[10] Heinz-Peter Breuer and Francesco Petruccione. “The theory of open quantum systems”. Oxford University Press. (2007).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001

[11] Howard M. Wiseman and Gerard J. Milburn. “Quantum measurement and control”. Volume 9780521804424, pages 1–460. Cambridge university press. (2009).
https:/​/​doi.org/​10.1017/​CBO9780511813948

[12] Serge Haroche and Jean Michel Raimond. “Exploring the Quantum: Atoms, Cavities, and Photons”. Oxford Univ. Press. Oxford (2006).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780198509141.001.0001

[13] Crispin Gardiner, Peter Zoller, and Peter Zoller. “Quantum noise: a handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics”. Springer Science & Business Media. (2004).
https:/​/​doi.org/​10.48550/​ARXIV.QUANT-PH/​9702030

[14] Todd A. Brun. “Continuous measurements, quantum trajectories, and decoherent histories”. Physical Review A 61 (2000).
https:/​/​doi.org/​10.1103/​physreva.61.042107

[15] Todd A. Brun. “A simple model of quantum trajectories”. American Journal of Physics 70, 719–737 (2002).
https:/​/​doi.org/​10.1119/​1.1475328

[16] M. B. Plenio and P. L. Knight. “The quantum-jump approach to dissipative dynamics in quantum optics”. Rev. Mod. Phys. 70, 101–144 (1998).
https:/​/​doi.org/​10.1103/​RevModPhys.70.101

[17] Daniel Manzano and Pablo I Hurtado. “Symmetry and the thermodynamics of currents in open quantum systems”. Phys. Rev. B 90, 125138 (2014).
https:/​/​doi.org/​10.1103/​PhysRevB.90.125138

[18] VV Belokurov, OA Khrustalev, VA Sadovnichy, and OD Timofeevskaya. “Conditional density matrix: Systems and subsystems in quantum mechanics” (2002). url: arxiv.org/​abs/​quant-ph/​0210149.
arXiv:quant-ph/0210149

[19] Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. “Completely positive dynamical semigroups of n-level systems”. Journal of Mathematical Physics 17, 821–825 (1976).
https:/​/​doi.org/​10.1063/​1.522979

[20] Goran Lindblad. “On the generators of quantum dynamical semigroups”. Communications in Mathematical Physics 48, 119–130 (1976).
https:/​/​doi.org/​10.1007/​BF01608499

[21] RS Ellis. “An overview of the theory of large deviations and applications to statistical mechanics.”. Insurance Mathematics and Economics 3, 232–233 (1996).
https:/​/​doi.org/​10.1080/​03461238.1995.10413952

[22] Hugo Touchette. “The large deviation approach to statistical mechanics”. Physics Reports 478, 1–69 (2009).
https:/​/​doi.org/​10.1016/​j.physrep.2009.05.002

[23] Angelo Vulpiani, Fabio Cecconi, Massimo Cencini, Andrea Puglisi, and Davide Vergni. “Large deviations in physics”. The Legacy of the Law of Large Numbers (Berlin: Springer) (2014).
https:/​/​doi.org/​10.1007/​978-3-642-54251-0

[24] Juan P Garrahan and Igor Lesanovsky. “Thermodynamics of quantum jump trajectories”. Phys. Rev. Lett. 104, 160601 (2010).
https:/​/​doi.org/​10.1103/​physrevlett.104.160601

[25] Charles Jordan and Károly Jordán. “Calculus of finite differences”. Volume 33. American Mathematical Soc. (1965).

[26] Bassano Vacchini. “General structure of quantum collisional models”. International Journal of Quantum Information 12, 1461011 (2014).
https:/​/​doi.org/​10.1142/​s0219749914610115

[27] Howard Carmichael. “An open systems approach to quantum optics: lectures presented at the université libre de bruxelles, october 28 to november 4, 1991”. Volume 18. Springer Science & Business Media. (2009).

[28] H. J. Carmichael, Surendra Singh, Reeta Vyas, and P. R. Rice. “Photoelectron waiting times and atomic state reduction in resonance fluorescence”. Physical Review A 39, 1200–1218 (1989).
https:/​/​doi.org/​10.1103/​PhysRevA.39.1200

[29] A. A. Gangat and G. J. Milburn. “Quantum clocks driven by measurement” (2021). arXiv:2109.05390.
arXiv:2109.05390

[30] James M. Hickey, Sam Genway, Igor Lesanovsky, and Juan P. Garrahan. “Thermodynamics of quadrature trajectories in open quantum systems”. Physical Review A 86 (2012).
https:/​/​doi.org/​10.1103/​physreva.86.063824

[31] Dario Cilluffo, Salvatore Lorenzo, G Massimo Palma, and Francesco Ciccarello. “Quantum jump statistics with a shifted jump operator in a chiral waveguide”. Journal of Statistical Mechanics: Theory and Experiment 2019, 104004 (2019).
https:/​/​doi.org/​10.1088/​1742-5468/​ab371c

Cited by

Time Stamp:

More from Quantum Journal