Canais de amortecimento de amplitude multinível ressonante

Canais de amortecimento de amplitude multinível ressonante

Canais ressonantes de amortecimento de amplitude multinível PlatoBlockchain Data Intelligence. Pesquisa vertical. Ai.

Stefano Chessa1,2 e Vittorio Giovanetti1

1NEST, Scuola Normale Superiore e Istituto Nanoscienze-CNR, I-56126 Pisa, Itália
2Engenharia Elétrica e de Computação, Universidade de Illinois Urbana-Champaign, Urbana, Illinois, 61801, EUA

Acha este artigo interessante ou deseja discutir? Scite ou deixe um comentário no SciRate.

Sumário

Apresentamos um novo conjunto de canais quânticos: canais ressonantes de amortecimento de amplitude multinível (ReMAD). Entre outros casos, eles podem descrever efeitos de dissipação de energia em sistemas atômicos multiníveis induzidos pela interação com um ambiente bosônico de temperatura zero. Em desacordo com a já conhecida classe de canais de amortecimento de amplitude multinível (MAD), esta nova classe de mapas permite a presença de um ambiente incapaz de discriminar transições com intervalos de energia idênticos. Após caracterizar a álgebra de suas regras de composição, analisando o caso qutrit, mostramos que este novo conjunto de canais pode apresentar degradabilidade e antidegradabilidade em vastas regiões do espaço de parâmetros permitido. Lá calculamos sua capacidade quântica e capacidade clássica privada. Mostramos que essas capacidades podem ser calculadas exatamente também em regiões do espaço de parâmetros onde os canais não são degradáveis ​​nem antidegradáveis.

► dados BibTeX

► Referências

[1] D. Cozzolino, B. Da Lio, D. Bacco e L. K. Oxenløwe, Advanced Quantum Technologies 2, 1900038 (2019), URL https:/​/​doi.org/​10.1002/​qute.201900038.
https: / / doi.org/ 10.1002 / qute.201900038

[2] Y. Wang, Z. Hu, B. C. Sanders e S. Kais, Frontiers in Physics 8, 479 (2020), ISSN 2296-424X, URL https:/​/​doi.org/​10.3389/​fphy.2020.589504.
https: / / doi.org/ 10.3389 / fphy.2020.589504

[3] A. Hill, Além dos qubits: Desbloqueando o terceiro estado em processadores quânticos (2021), URL https:/​/​medium.com/​rigetti/​beyond-qubits-unlocking-the-third-state-in-quantum-processors -12d2f84133c4.
https://medium.com/​rigetti/​beyond-qubits-unlocking-the-third-state-in-quantum-processors-12d2f84133c4

[4] M. Fanizza, F. Kianvash e V. Giovannetti, Phys. Rev. 125, 020503 (2020), URL https:/​/​doi.org/​10.1103/​PhysRevLett.125.020503.
https: / / doi.org/ 10.1103 / PhysRevLett.125.020503

[5] F. Kianvash, M. Fanizza e V. Giovannetti, Quantum 6, 647 (2022), ISSN 2521-327X, URL https:/​/​doi.org/​10.22331/​q-2022-02-09-647 .
https:/​/​doi.org/​10.22331/​q-2022-02-09-647

[6] I. Devetak e PW Shor, Communications in Mathematical Physics 256, 287 (2005), URL https:/​/​doi.org/​10.1007/​s00220-005-1317-6.
https:/​/​doi.org/​10.1007/​s00220-005-1317-6

[7] A. D'Arrigo, G. Benenti e G. Falci, New Journal of Physics 9, 310 (2007), URL https:/​/​doi.org/​10.1088/​1367-2630/​9/​9 /​310.
https:/​/​doi.org/​10.1088/​1367-2630/​9/​9/​310

[8] S. Chessa e V. Giovannetti, Communications Physics 4, 22 (2021a), ISSN 2399-3650, URL https:/​/​doi.org/​10.1038/​s42005-021-00524-4.
https:/​/​doi.org/​10.1038/​s42005-021-00524-4

[9] S. Chessa e V. Giovannetti, Quantum 5, 504 (2021b), ISSN 2521-327X, URL https:/​/​doi.org/​10.22331/​q-2021-07-15-504.
https:/​/​doi.org/​10.22331/​q-2021-07-15-504

[10] F. Leditzky, D. Leung, V. Siddhu, G. Smith e J. Smolin, O ornitorrinco do zoológico de canais quânticos (2022), arXiv:2202.08380, URL https://doi.org/10.48550/ arXiv.2202.08380.
https://​/​doi.org/​10.48550/​arXiv.2202.08380
arXiv: 2202.08380

[11] TS Cubitt, MB Ruskai e G. Smith, Journal of Mathematical Physics 49, 102104 (2008), URL https:/​/​doi.org/​10.1063/​1.2953685.
https: / / doi.org/ 10.1063 / 1.2953685

[12] S. Singh e N. Datta, npj Quantum Information 8, 50 (2022), ISSN 2056-6387, URL https:/​/​doi.org/​10.1038/​s41534-022-00550-2.
https:/​/​doi.org/​10.1038/​s41534-022-00550-2

[13] A. S. Holevo, Sistemas Quânticos, Canais, Informação (De Gruyter, 2019), URL https:/​/​doi.org/​10.1515/​9783110642490.
https: / / doi.org/ 10.1515 / 9783110642490

[14] M. M. Wilde, Teoria da Informação Quântica (Cambridge University Press, Cambridge, 2017), 2ª ed., ISBN 9781107176164, URL https:/​/​doi.org/​10.1017/​9781316809976.
https: / / doi.org/ 10.1017 / 9781316809976

[15] J. Watrous, A Teoria da Informação Quântica (Cambridge University Press, Cambridge, 2018), ISBN 9781107180567, URL https:/​/​doi.org/​10.1017/​9781316848142.
https: / / doi.org/ 10.1017 / 9781316848142

[16] M. Hayashi, Teoria da informação quântica (Springer, 2017), 2ª ed., ISBN 9783662497234, URL https:/​/​doi.org/​10.1007/​978-3-662-49725-8.
https:/​/​doi.org/​10.1007/​978-3-662-49725-8

[17] M. A. Nielsen e IL Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010), ISBN 9781107002173, URL https:/​/​doi.org/​10.1017/​CBO9780511976667.
https: / / doi.org/ 10.1017 / CBO9780511976667

[18] S. Imre e L. Gyongyosi, Advanced Quantum Communications: An Engineering Approach (Wiley-IEEE Press, 2012), 1ª ed., ISBN 1118002369, URL https:/​/​doi.org/​10.1002/​9781118337462.
https: / / doi.org/ 10.1002 / 9781118337462

[19] A. S. Holevo e V. Giovannetti, Reports on Progress in Physics 75, 046001 (2012), URL https:/​/​doi.org/​10.1088/​0034-4885/​75/​4/​046001.
https:/​/​doi.org/​10.1088/​0034-4885/​75/​4/​046001

[20] L. Gyongyosi, S. Imre e H. V. Nguyen, IEEE Communications Surveys Tutorials 20, 1149 (2018), URL https:/​/​doi.org/​10.1109/​COMST.2017.2786748.
https://​/​doi.org/​10.1109/​COMST.2017.2786748

[21] Y. Huang, New Journal of Physics 16, 033027 (2014), URL https:/​/​doi.org/​10.1088/​1367-2630/​16/​3/​033027.
https:/​/​doi.org/​10.1088/​1367-2630/​16/​3/​033027

[22] T. Cubitt, D. Elkouss, W. Matthews, M. Ozols, D. Pérez-García e S. Strelchuk, Nature Communications 6, 6739 (2015), ISSN 2041-1723, URL https:/​/​doi. org/​10.1038/​ncomms7739.
https: / / doi.org/ 10.1038 / ncomms7739

[23] D. Elkouss e D. Pérez-García, Nature Communications 9, 1149 (2018), ISSN 2041-1723, URL https:/​/​doi.org/​10.1038/​s41467-018-03428-0.
https:/​/​doi.org/​10.1038/​s41467-018-03428-0

[24] MB Hastings, Nature Physics 5, 255 (2009), ISSN 1745-2481, URL https:/​/​doi.org/​10.1038/​nphys1224.
https: / / doi.org/ 10.1038 / nphys1224

[25] G. Smith e J. Yard, Science 321, 1812 (2008), URL https:/​/​doi.org/​10.1126/​science.1162242.
https: / / doi.org/ 10.1126 / science.1162242

[26] K. Li, A. Winter, X. Zou e G. Guo, Phys. Rev. 103, 120501 (2009), URL https:/​/​doi.org/​10.1103/​PhysRevLett.103.120501.
https: / / doi.org/ 10.1103 / PhysRevLett.103.120501

[27] E. Y. Zhu, Q. Zhuang, M.-H. Hsieh e P. W. Shor, IEEE Transactions on Information Theory 65, 3973 (2019), URL https:/​/​doi.org/​10.1109/​TIT.2018.2889082.
https: / / doi.org/ 10.1109 / TIT.2018.2889082

[28] EY Zhu, Q. Zhuang e PW Shor, Phys. Rev. 119, 040503 (2017), URL https:/​/​doi.org/​10.1103/​PhysRevLett.119.040503.
https: / / doi.org/ 10.1103 / PhysRevLett.119.040503

[29] F. Caruso e V. Giovannetti, Phys. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.74.062307

[30] G. Smith e J. A. Smolin, em 2008 IEEE Information Theory Workshop (2008), pp. 368–372, URL https:/​/​doi.org/​10.1109/​ITW.2008.4578688.
https: / / doi.org/ 10.1109 / ITW.2008.4578688

[31] K. Brádler, N. Dutil, P. Hayden e A. Muhammad, Journal of Mathematical Physics 51, 072201 (2010), URL https:/​/​doi.org/​10.1063/​1.3449555.
https: / / doi.org/ 10.1063 / 1.3449555

[32] S. Watanabe, físico. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.85.012326

[33] L. Gyongyosi, IEEE Access 2, 333 (2014), URL https://​/​doi.org/​10.1109/​ACCESS.2014.2317652.
https: / / doi.org/ 10.1109 / ACCESS.2014.2317652

[34] D. Sutter, V. B. Scholz, A. Winter e R. Renner, IEEE Transactions on Information Theory 63, 7832 (2017), URL https:/​/​doi.org/​10.1109/​TIT.2017.2754268.
https: / / doi.org/ 10.1109 / TIT.2017.2754268

[35] S. Pirandola, R. Laurenza, C. Ottaviani e L. Banchi, Nature Communications 8, 15043 (2017), ISSN 2041-1723, URL https:/​/​doi.org/​10.1038/​ncomms15043.
https: / / doi.org/ 10.1038 / ncomms15043

[36] A. Anshu, em 2017 IEEE Information Theory Workshop (ITW) (2017), pp. 214–218, URL https:/​/​doi.org/​10.1109/​ITW.2017.8277947.
https: / / doi.org/ 10.1109 / ITW.2017.8277947

[37] F. Leditzky, D. Leung e G. Smith, Phys. Rev. 120, 160503 (2018), URL https:/​/​doi.org/​10.1103/​PhysRevLett.120.160503.
https: / / doi.org/ 10.1103 / PhysRevLett.120.160503

[38] M. Tomamichel, M. M. Wilde e A. Winter, IEEE Transactions on Information Theory 63, 715 (2017), URL https:/​/​doi.org/​10.1109/​TIT.2016.2615847.
https: / / doi.org/ 10.1109 / TIT.2016.2615847

[39] M. M. Wilde, M. Tomamichel e M. Berta, IEEE Transactions on Information Theory 63, 1792 (2017), URL https:/​/​doi.org/​10.1109/​TIT.2017.2648825.
https: / / doi.org/ 10.1109 / TIT.2017.2648825

[40] M. Christandl e A. Müller-Hermes, Communications in Mathematical Physics 353, 821 (2017), ISSN 1432-0916, URL https:/​/​doi.org/​10.1007/​s00220-017-2885-y.
https: / / doi.org/ 10.1007 / s00220-017-2885-y

[41] X. Wang, K. Fang e R. Duan, IEEE Transactions on Information Theory 65, 2583 (2019), URL https:/​/​doi.org/​10.1109/​TIT.2018.2874031.
https: / / doi.org/ 10.1109 / TIT.2018.2874031

[42] C. Hirche, C. Rouzé e D. Stilck França, Quantum 6, 862 (2022), ISSN 2521-327X, URL https:/​/​doi.org/​10.22331/​q-2022-11-28- 862.
https:/​/​doi.org/​10.22331/​q-2022-11-28-862

[43] K. Fang e H. Fawzi, Communications in Mathematical Physics 384, 1615 (2021), ISSN 1432-0916, URL https:/​/​doi.org/​10.1007/​s00220-021-04064-4.
https:/​/​doi.org/​10.1007/​s00220-021-04064-4

[44] C. Hirche e F. Leditzky, Limitando capacidades quânticas via ordens parciais e complementaridade (2022), arXiv:2202.11688, URL https:/​/​doi.org/​10.48550/​arXiv.2202.11688.
https://​/​doi.org/​10.48550/​arXiv.2202.11688
arXiv: 2202.11688

[45] O. Fawzi, A. Shayeghi e H. Ta, em 2021 IEEE International Symposium on Information Theory (ISIT) (2021), pp. .272.
https: / / doi.org/ 10.1109 / ISIT45174.2021.9517913

[46] K. Hammerer, AS Sørensen e ES Polzik, Rev. Física. 82, 1041 (2010), URL https://​/​doi.org/​10.1103/​RevModPhys.82.1041.
https: / / doi.org/ 10.1103 / RevModPhys.82.1041

[47] N. Sangouard, C. Simon, H. de Riedmatten e N. Gisin, Rev. Física. 83, 33 (2011), URL https://​/​doi.org/​10.1103/​RevModPhys.83.33.
https: / / doi.org/ 10.1103 / RevModPhys.83.33

[48] A. Reiserer e G. Rempe, Rev. Mod. Física. 87, 1379 (2015), URL https://​/​doi.org/​10.1103/​RevModPhys.87.1379.
https: / / doi.org/ 10.1103 / RevModPhys.87.1379

[49] J. N. Damask, Polarização óptica em telecomunicações (Springer Series in Optical Sciences, 2005), 1ª ed., ISBN 978-0-387-26302-1, URL https:/​/​doi.org/​10.1007/​b137386.
https: / / doi.org/ 10.1007 / b137386

[50] D. Gottesman, A. Kitaev e J. Preskill, Phys. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.64.012310

[51] SD Bartlett, H. de Guise e BC Sanders, Phys. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.65.052316

[52] B. M. Terhal, J. Conrad e C. Vuillot, Quantum Science and Technology 5, 043001 (2020), URL https:/​/​doi.org/​10.1088/​2058-9565/​ab98a5.
https:/​/​doi.org/​10.1088/​2058-9565/​ab98a5

[53] W. Cai, Y. Ma, W. Wang, C.-L. Zou e L. Sun, Pesquisa Fundamental 1, 50 (2021), ISSN 2667-3258, URL https:/​/​doi.org/​10.1016/​j.fmre.2020.12.006.
https://​/​doi.org/​10.1016/​j.fmre.2020.12.006

[54] S. Carretta, D. Zueco, A. Chiesa, Á. Gómez-León e F. Luis, Cartas de Física Aplicada 118, 240501 (2021), URL https:/​/​doi.org/​10.1063/​5.0053378.
https: / / doi.org/ 10.1063 / 5.0053378

[55] WF Stinespring, Proceedings of the American Mathematical Society 6, 211 (1955), URL https:/​/​doi.org/​10.2307/​2032342.
https: / / doi.org/ 10.2307 / 2032342

[56] K. Kraus, Annals of Physics 64, 311 (1971), ISSN 0003-4916, URL https:/​/​doi.org/​10.1016/​0003-4916(71)90108-4.
https:/​/​doi.org/​10.1016/​0003-4916(71)90108-4

[57] Y. Ouyang, Informação Quântica e Computação 14, 917 (2014), URL https:/​/​doi.org/​10.26421/​QIC14.11-12-2.
https: / / doi.org/ 10.26421 / QIC14.11-12-2

[58] O. Fawzi, A. Müller-Hermes e A. Shayeghi, na 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), editado por M. Braverman (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Alemanha, 2022), vol. 215 de Leibniz International Proceedings in Informatics (LIPIcs), pp. 68:1–68:20, ISBN 978-3-95977-217-4, ISSN 1868-8969, URL https:/​/​doi.org/​10.4230 /​LIPIcs.ITCS.2022.68.
https: / / doi.org/ 10.4230 / LIPIcs.ITCS.2022.68

[59] B. Schumacher e MA Nielsen, Phys. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.54.2629

[60] S. Lloyd, Física. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.55.1613

[61] P. W. Shor, em Notas de aula, MSRI Workshop on Quantum Computation (Quantum Information and Cryptography) (2002), URL https:/​/​www.msri.org/​workshops/​203/​schedules/​1181.
https://www.msri.org/​workshops/​203/​schedules/​1181

[62] I. Devetak, IEEE Transactions on Information Theory 51, 44 (2005), URL https:/​/​doi.org/​10.1109/​TIT.2004.839515.
https: / / doi.org/ 10.1109 / TIT.2004.839515

[63] AS Holevo, Problemy Peredachi Informatsii 9, 3 (1973), URL http:/​/​www.mathnet.ru/​eng/​ppi903.
http://www.mathnet.ru/eng/ppi903

[64] N. Cai, A. Winter e R. W. Yeung, Problemas de transmissão de informações 40, 318 (2004), URL https:/​/​doi.org/​10.1007/​s11122-005-0002-x.
https: / / doi.org/ 10.1007 / s11122-005-0002-x

[65] M. M. Wolf e D. Perez-Garcia, Physical Review A 75, 012303 (2007), URL https:/​/​doi.org/​10.1103/​PhysRevA.75.012303.
https: / / doi.org/ 10.1103 / PhysRevA.75.012303

[66] G. Smith e J. A. Smolin, Cartas de revisão física 98, 030501 (2007), URL https:/​/​doi.org/​10.1103/​PhysRevLett.98.030501.
https: / / doi.org/ 10.1103 / PhysRevLett.98.030501

[67] G. Smith, Physical Review A 78, 022306 (2008), URL https:/​/​doi.org/​10.1103/​PhysRevA.78.022306.
https: / / doi.org/ 10.1103 / PhysRevA.78.022306

[68] J. Yard, P. Hayden e I. Devetak, IEEE Transactions on Information Theory 54, 3091 (2008), URL https:/​/​doi.org/​10.1109/​TIT.2008.924665.
https: / / doi.org/ 10.1109 / TIT.2008.924665

[69] CH Bennett, DP DiVincenzo e JA Smolin, Phys. Rev. 78, 3217 (1997), URL https://​/​doi.org/​10.1103/​PhysRevLett.78.3217.
https: / / doi.org/ 10.1103 / PhysRevLett.78.3217

[70] V. Giovannetti e R. Fazio, Phys. Rev.
https: / / doi.org/ 10.1103 / PhysRevA.71.032314

[71] K. Brádler, Sistemas Abertos e Dinâmica da Informação 22, 1550026 (2015), URL https:/​/​doi.org/​10.1142/​S1230161215500262.
https: / / doi.org/ 10.1142 / S1230161215500262

[72] CH Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres e WK Wootters, Phys. Rev. 70, 1895 (1993), URL https://​/​doi.org/​10.1103/​PhysRevLett.70.1895.
https: / / doi.org/ 10.1103 / PhysRevLett.70.1895

[73] CH Bennett e SJ Wiesner, Phys. Rev. 69, 2881 (1992), URL https://​/​doi.org/​10.1103/​PhysRevLett.69.2881.
https: / / doi.org/ 10.1103 / PhysRevLett.69.2881

[74] CH Bennett, PW Shor, JA Smolin e AV Thapliyal, Phys. Rev. 83, 3081 (1999), URL https://​/​doi.org/​10.1103/​PhysRevLett.83.3081.
https: / / doi.org/ 10.1103 / PhysRevLett.83.3081

[75] C. Bennett, P. Shor, J. Smolin e A. Thapliyal, IEEE Transactions on Information Theory 48, 2637 (2002), URL https:/​/​doi.org/​10.1109/​TIT.2002.802612.
https: / / doi.org/ 10.1109 / TIT.2002.802612

Citado por

Não foi possível buscar Dados citados por referência cruzada durante a última tentativa 2023-01-19 14:14:17: Não foi possível buscar dados citados por 10.22331 / q-2023-01-19-902 do Crossref. Isso é normal se o DOI foi registrado recentemente. Em SAO / NASA ADS nenhum dado sobre a citação de trabalhos foi encontrado (última tentativa 2023-01-19 14:14:18).

Carimbo de hora:

Mais de Diário Quântico