Kvantni podpisi v nelinearnih gravitacijskih valovih PlatoBlockchain Data Intelligence. Navpično iskanje. Ai.

Kvantni podpisi v nelinearnih gravitacijskih valovih

Thiago Guerreiro1, Francesco Coradeschi2, Antonia Micol Frassino3, Jennifer Rittenhouse West4, in Enrico Junior Schioppa5

1Oddelek za fiziko, Papeška katoliška univerza Rio de Janeiro, Rio de Janeiro 22451-900, Brazilija
2Istituto del Consiglio Nazionale delle Ricerche, OVI, Italija
3Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, ​​Martí i Franquès 1, E-08028 Barcelona, ​​Španija
4Nacionalni laboratorij Lawrence Berkeley, Berkeley, CA 94720, ZDA
5Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, and Istituto Nazionale di Fisica Nucleare (INFN) sezione di Lecce, via per Arnesano, 73100 Lecce, Italy

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Učinkovit opis gravitacije s kvantno teorijo polja kljub nerenormalizabilnosti omogoča napovedi onkraj klasične splošne teorije relativnosti. Ko vstopamo v dobo astronomije gravitacijskih valov, je pomembno in pravočasno vprašanje, ali je mogoče najti merljive kvantne napovedi, ki odstopajo od klasične gravitacije, analogne učinkom kvantne optike, ki jih klasična elektrodinamika ne more razložiti. V tem delu preiskujemo kvantne podpise v gravitacijskih valovih z uporabo orodij iz kvantne optike. Stisnjeno-koherentni gravitacijski valovi, ki lahko kažejo subpoissonovsko statistiko gravitona, lahko povečajo ali zatrejo signal, izmerjen z interferometrom, kar je značilen učinek kvantnega stiskanja. Poleg tega pokažemo, da je mogoče kvantna stanja Gaussovega gravitacijskega vala rekonstruirati iz meritev v skupini optičnih polj, ki medsebojno delujejo z eno samo kopijo gravitacijskega vala, s čimer odpiramo možnost zaznavanja kvantnih značilnosti gravitacije onkraj klasične splošne teorije relativnosti.

Leta 2012 je Freeman Dyson napisal esej, v katerem trdi, da so gravitoni – osnovni kvanti gravitacijskih valov – v bistvu nezaznavni, tj. ne glede na to, katere tehnologije bi se lahko razvile v prihodnosti. Zdelo se je, da to nakazuje, da je merjenje učinkov kvantne gravitacije nemogoče, in zato ne bi bilo potrebe po kvantnomehanski teoriji gravitacije. Če je tako, bi to pomenilo, da je gravitacija v bistvu klasična – končno z operativnega vidika – kar ima globoke posledice za naše razumevanje kvantne mehanike in samega vesolja.

Če razmišljamo po analogiji, pa odkrivanje fotonov ni edini način za dokazovanje kvantnomehanske narave elektromagnetizma. Kvantna optika nas je naučila, da so fluktuacije kvantnega polja merljive v makroskopskih stanjih svetlobe – npr. stisnjenih in stisnjeno-koherentnih stanjih – z linearno klasično detekcijo, kot so homodinske in heterodinske meritve. Ta ideja nas je pripeljala do iskanja makroskopskih kvantnih učinkov gravitacijskih valov, merljivih ne glede na našo sposobnost zaznavanja gravitonov. Če povzamemo, postavljamo vprašanje: katere napovedi učinkovitega kvantnega opisa gravitacije, ki odstopajo od klasične splošne teorije relativnosti, bi lahko zaznali v detektorjih gravitacijskih valov?

V tem delu poročamo o nekaterih naših najnovejših rezultatih v poskusu odgovora na to vprašanje. Pokažemo, da znotraj opisa gravitacije v nizkoenergijsko učinkoviti teoriji polja obstajajo kvantna stanja gravitacijskih valov – predvsem stisnjeno-koherentna stanja – ki bi lahko povzročila neklasične učinke, merljive z uporabo današnjih ali bližnjih interferometričnih detektorjev, kot sta LIGO in DEVICA. Generiranje takšnih kvantnih stanj gravitacijskih valov ostaja neznanka in še veliko je treba raziskati, vendar naše delo utira pot fenomenološkemu iskanju takšnih učinkov, ki bi glede na nelinearno naravo Einsteinove gravitacije lahko nastali v močnem astrofizikalnem polju dogodkov. Če jih zaznamo, učinki, ki jih opisujemo, dajejo dim za kvantno mehansko naravo gravitacije in tako odpirajo pot do eksperimentalnih meritev kvantnega prostorčasa.

► BibTeX podatki

► Reference

[1] Alexander H Nitz, Collin D Capano, Sumit Kumar, Yi-Fan Wang, Shilpa Kastha, Marlin Schäfer, Rahul Dhurkunde, and Miriam Cabero. “3-ogc: Catalog of gravitational waves from compact-binary mergers”. The Astrophysical Journal 922, 76 (2021).
https:/​/​doi.org/​10.3847/​1538-4357/​ac1c03

[2] Belinda Pang and Yanbei Chen. “Quantum interactions between a laser interferometer and gravitational waves”. Phys. Rev. D 98, 124006 (2018).
https: / / doi.org/ 10.1103 / PhysRevD.98.124006

[3] Thiago Guerreiro. “Quantum effects in gravity waves”. Classical and Quantum Gravity 37, 155001 (2020).
https:/​/​doi.org/​10.1088/​1361-6382/​ab9d5d

[4] Luiz Davidovich. “Sub-poissonian processes in quantum optics”. Rev. Mod. Phys. 68, 127–173 (1996).
https: / / doi.org/ 10.1103 / RevModPhys.68.127

[5] Freeman Dyson. “Is a graviton detectable?”. Int. J. Mod. Phys. A 28, 1330041 (2013).
https://​/​doi.org/​10.1142/​S0217751X1330041X

[6] A. I. Lvovsky. “Squeezed light”. Chapter 5, pages 121–163. John Wiley & Sons, Ltd. (2015).
https://​/​doi.org/​10.48550/​arXiv.1401.4118

[7] Francesco Coradeschi, Antonia Micol Frassino, Thiago Guerreiro, Jennifer Rittenhouse West, and Enrico Junior Schioppa. “Can we detect the quantum nature of weak gravitational fields?”. Universe 7 (2021).
https: / / doi.org/ 10.3390 / university7110414

[8] Maulik Parikh, Frank Wilczek, and George Zahariade. “Quantum mechanics of gravitational waves”. Phys. Rev. Lett. 127, 081602 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.127.081602

[9] Samarth Chawla and Maulik Parikh. “Quantum Gravity Corrections to the Fall of the Apple” (2021). arXiv:2112.14730.
arXiv: 2112.14730

[10] Maulik Parikh, Frank Wilczek, and George Zahariade. “Signatures of the quantization of gravity at gravitational wave detectors”. Phys. Rev. D 104, 046021 (2021).
https: / / doi.org/ 10.1103 / PhysRevD.104.046021

[11] L. P. Grishchuk and Y. V. Sidorov. “Squeezed quantum states of relic gravitons and primordial density fluctuations”. Phys. Rev. D 42, 3413–3421 (1990).
https: / / doi.org/ 10.1103 / PhysRevD.42.3413

[12] Andreas Albrecht, Pedro Ferreira, Michael Joyce, and Tomislav Prokopec. “Inflation and squeezed quantum states”. Phys. Rev. D 50, 4807–4820 (1994).
https: / / doi.org/ 10.1103 / PhysRevD.50.4807

[13] Don Koks, Andrew Matacz, and B. L. Hu. “Entropy and uncertainty of squeezed quantum open systems”. Phys. Rev. D 55, 5917–5935 (1997).
https: / / doi.org/ 10.1103 / PhysRevD.55.5917

[14] S. Hawking. “Black hole explosions?”. Nature 248, 30–31 (1974).
https: / / doi.org/ 10.1038 / 248030a0

[15] Mark P. Hertzberg and Jacob A. Litterer. “Bound on Quantum Fluctuations in Gravitational Waves from LIGO” (2021). arXiv:2112.12159.
arXiv: 2112.12159

[16] W. Schleich and J. A. Wheeler. “Oscillations in photon distribution of squeezed states”. J. Opt. Soc. Am. B 4, 1715–1722 (1987).
https: / / doi.org/ 10.1364 / JOSAB.4.001715

[17] Charles W. Misner, K. S. Thorne, and J. A. Wheeler. “Gravitation”. W. H. Freeman. San Francisco (1973).

[18] M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko, and Charles W. Clark. “Search for new physics with atoms and molecules”. Rev. Mod. Phys. 90, 025008 (2018).
https: / / doi.org/ 10.1103 / RevModPhys.90.025008

[19] Fernando Monteiro, Gadi Afek, Daniel Carney, Gordan Krnjaic, Jiaxiang Wang, and David C. Moore. “Search for composite dark matter with optically levitated sensors”. Phys. Rev. Lett. 125, 181102 (2020).
https: / / doi.org/ 10.1103 / PhysRevLett.125.181102

[20] Charles P. Blakemore, Alexander Fieguth, Akio Kawasaki, Nadav Priel, Denzal Martin, Alexander D. Rider, Qidong Wang, and Giorgio Gratta. “Search for non-newtonian interactions at micrometer scale with a levitated test mass”. Phys. Rev. D 104, L061101 (2021).
https://​/​doi.org/​10.1103/​PhysRevD.104.L061101

[21] David C Moore and Andrew A Geraci. “Searching for new physics using optically levitated sensors”. Quantum Science and Technology 6, 014008 (2021).
https://​/​doi.org/​10.1088/​2058-9565/​abcf8a

[22] K. M. Backes et al. “A quantum enhanced search for dark matter axions”. NaturePage 238 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03226-7

[23] Deniz Aybas, Janos Adam, Emmy Blumenthal, Alexander V. Gramolin, Dorian Johnson, Annalies Kleyheeg, Samer Afach, John W. Blanchard, Gary P. Centers, Antoine Garcon, Martin Engler, Nataniel L. Figueroa, Marina Gil Sendra, Arne Wickenbrock, Matthew Lawson, Tao Wang, Teng Wu, Haosu Luo, Hamdi Mani, Philip Mauskopf, Peter W. Graham, Surjeet Rajendran, Derek F. Jackson Kimball, Dmitry Budker, and Alexander O. Sushkov. “Search for axionlike dark matter using solid-state nuclear magnetic resonance”. Phys. Rev. Lett. 126, 141802 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.126.141802

[24] Peter W. Graham, David E. Kaplan, Jeremy Mardon, Surjeet Rajendran, William A. Terrano, Lutz Trahms, and Thomas Wilkason. “Spin precession experiments for light axionic dark matter”. Phys. Rev. D 97, 055006 (2018).
https: / / doi.org/ 10.1103 / PhysRevD.97.055006

[25] K. Wurtz, B.M. Brubaker, Y. Jiang, E.P. Ruddy, D.A. Palken, and K.W. Lehnert. “Cavity entanglement and state swapping to accelerate the search for axion dark matter”. PRX Quantum 2, 040350 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.040350

[26] J. Estrada, R. Harnik, D. Rodrigues, and M. Senger. “Searching for dark particles with quantum optics”. PRX Quantum 2, 030340 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.030340

[27] D Carney, G Krnjaic, D C Moore, C A Regal, G Afek, S Bhave, B Brubaker, T Corbitt, J Cripe, N Crisosto, A Geraci, S Ghosh, J G E Harris, A Hook, E W Kolb, J Kunjummen, R F Lang, T Li, T Lin, Z Liu, J Lykken, L Magrini, J Manley, N Matsumoto, A Monte, F Monteiro, T Purdy, C J Riedel, R Singh, S Singh, K Sinha, J M Taylor, J Qin, D J Wilson, and Y Zhao. “Mechanical quantum sensing in the search for dark matter”. Quantum Science and Technology 6, 024002 (2021).
https://​/​doi.org/​10.1088/​2058-9565/​abcfcd

[28] Tanjung Krisnanda, Margherita Zuppardo, Mauro Paternostro, and Tomasz Paterek. “Revealing nonclassicality of inaccessible objects”. Phys. Rev. Lett. 119, 120402 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.120402

[29] Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim, and Gerard Milburn. “Spin entanglement witness for quantum gravity”. Phys. Rev. Lett. 119, 240401 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.240401

[30] C. Marletto in V. Vedral. "Gravitacijsko povzročena prepletenost med dvema masivnima delcema je zadosten dokaz kvantnih učinkov gravitacije." Phys. Rev. Lett. 119, 240402 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.240402

[31] Teodora Oniga and Charles H.-T. Wang. “Quantum gravitational decoherence of light and matter”. Phys. Rev. D 93, 044027 (2016).
https: / / doi.org/ 10.1103 / PhysRevD.93.044027

[32] Daniel Carney, Holger Müller, and Jacob M. Taylor. “Using an atom interferometer to infer gravitational entanglement generation”. PRX Quantum 2, 030330 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.030330

[33] Daniel Carney, Holger Müller, and Jacob M. Taylor. “Comment on using an atom interferometer to infer gravitational entanglement generation” (2021). arXiv:2111.04667.
arXiv: 2111.04667

[34] Kirill Streltsov, Julen Simon Pedernales, and Martin Bodo Plenio. “On the Significance of Interferometric Revivals for the Fundamental Description of Gravity”. Universe 8, 58 (2022). arXiv:2111.04570.
https: / / doi.org/ 10.3390 / university8020058
arXiv: 2111.04570

[35] Tobias Westphal, Hans Hepach, Jeremias Pfaff, and Markus Aspelmeyer. “Measurement of gravitational coupling between millimetre-sized masses”. NaturePage 225 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03250-7

[36] Markus Aspelmeyer. "Ko Zeh sreča Feynmana: Kako se izogniti videzu klasičnega sveta v gravitacijskih eksperimentih". Fundam. Teor. Phys. 204, 85–95 (2022). arXiv:2203.05587.
https:/​/​doi.org/​10.1007/​978-3-030-88781-0_5
arXiv: 2203.05587

[37] Rafal Demkowicz-Dobrzański, Marcin Jarzyna, and Jan Kołodyński. “Chapter four – quantum limits in optical interferometry”. Volume 60 of Progress in Optics, pages 345–435. Elsevier. (2015).
https: / / doi.org/ 10.1016 / bs.po.2015.02.003

[38] Marko Toroš, Anupam Mazumdar, and Sougato Bose. “Loss of coherence of matter-wave interferometer from fluctuating graviton bath” (2020). arXiv:2008.08609.
arXiv: 2008.08609

[39] Alessandra Buonanno and Yanbei Chen. “Scaling law in signal recycled laser-interferometer gravitational-wave detectors”. Phys. Rev. D 67, 062002 (2003).
https: / / doi.org/ 10.1103 / PhysRevD.67.062002

[40] Marlan O. Scully and M. Suhail Zubairy. “Quantum optics”. Cambridge University Press. (1997).

[41] Igor Brandão, Bruno Suassuna, Bruno Melo, and Thiago Guerreiro. “Entanglement dynamics in dispersive optomechanics: Nonclassicality and revival”. Phys. Rev. Research 2, 043421 (2020).
https: / / doi.org/ 10.1103 / PhysRevResearch.2.043421

[42] M. P. Blencowe. “Effective field theory approach to gravitationally induced decoherence”. Phys. Rev. Lett. 111, 021302 (2013).
https: / / doi.org/ 10.1103 / PhysRevLett.111.021302

[43] AA Clerk, MH Devoret, SM Girvin, Florian Marquardt in RJ Schoelkopf. “Uvod v kvantni šum, merjenje in ojačanje”. Rev. Mod. Phys. 82, 1155–1208 (2010).
https: / / doi.org/ 10.1103 / RevModPhys.82.1155

[44] E. Oudot, P. Sekatski, F. Fröwis, N. Gisin, and N. Sangouard. “Two-mode squeezed states as schrödinger cat-like states”. J. Opt. Soc. Am. B 32, 2190–2197 (2015).
https: / / doi.org/ 10.1364 / JOSAB.32.002190

[45] Wojciech H. Zurek, Salman Habib, and Juan Pablo Paz. “Coherent states via decoherence”. Phys. Rev. Lett. 70, 1187–1190 (1993).
https: / / doi.org/ 10.1103 / PhysRevLett.70.1187

[46] Charles W Misner, Kip Thorne, and Wojciech Żurek. “John wheeler, relativity, and quantum information”. Physics Today 62 (2009).
https: / / doi.org/ 10.1063 / 1.3120895

[47] DF Walls and GJ Milburn. “Quantum optics (springer, berlin” (1994).

[48] Edward B. Rockower. “Calculating the quantum characteristic function and the photon-number generating function in quantum optics”. Phys. Rev. A 37, 4309–4318 (1988).
https: / / doi.org/ 10.1103 / PhysRevA.37.4309

[49] Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro in Seth Lloyd. "Gaussova kvantna informacija". Rev. Mod. Phys. 84, 621–669 (2012).
https: / / doi.org/ 10.1103 / RevModPhys.84.621

[50] V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko. “Multidimensional hermite polynomials and photon distribution for polymode mixed light”. Phys. Rev. A 50, 813–817 (1994).
https: / / doi.org/ 10.1103 / PhysRevA.50.813

[51] Michael Vanner, Igor Pikovski, and M. Kim. “Towards optomechanical quantum state reconstruction of mechanical motion”. Annalen der Physik 527 (2015).
https: / / doi.org/ 10.1002 / andp.201400124

[52] Robert W. Boyd. “Nonlinear optics”. Academic Press. (2008).

[53] L. D. Landau and E. M. Lifshitz. “The classical theory of fields course of theoretical physics”. Butterworth-Heinemann. (1975).

[54] Benjamin P. Abbott et al. “The basic physics of the binary black hole merger GW150914”. Annalen Phys. 529, 1600209 (2017). arXiv:1608.01940.
https: / / doi.org/ 10.1002 / andp.201600209
arXiv: 1608.01940

[55] F. Shojaei Arani, M. Bagheri Harouni, B. Lamine, and A. Blanchard. “Imprints of the Squeezed Primordial Gravitational Waves on the Quantum Electromagnetic Field” (2021). arXiv:2110.10962.
arXiv: 2110.10962

[56] Bonny L. Schumaker and Carlton M. Caves. “New formalism for two-photon quantum optics. ii. mathematical foundation and compact notation”. Phys. Rev. A 31, 3093–3111 (1985).
https: / / doi.org/ 10.1103 / PhysRevA.31.3093

[57] Andreas Albrecht, Pedro Ferreira, Michael Joyce, and Tomislav Prokopec. “Inflation and squeezed quantum states”. Phys. Rev. D 50, 4807–4820 (1994). arXiv:astro-ph/​9303001.
https: / / doi.org/ 10.1103 / PhysRevD.50.4807
arXiv:astro-ph/9303001

[58] Sugumi Kanno and Jiro Soda. “Detecting nonclassical primordial gravitational waves with hanbury-brown–twiss interferometry”. Phys. Rev. D 99, 084010 (2019).
https: / / doi.org/ 10.1103 / PhysRevD.99.084010

[59] Dieter R. Brill and James B. Hartle. “Method of the self-consistent field in general relativity and its application to the gravitational geon”. Phys. Rev. 135, B271–B278 (1964).
https: / / doi.org/ 10.1103 / PhysRev.135.B271

[60] R. F. Sawyer. “Quantum break in high intensity gravitational wave interactions”. Phys. Rev. Lett. 124, 101301 (2020).
https: / / doi.org/ 10.1103 / PhysRevLett.124.101301

[61] M. T. Grisaru, P. van Nieuwenhuizen, and C. C. Wu. “Gravitational born amplitudes and kinematical constraints”. Phys. Rev. D 12, 397–403 (1975).
https: / / doi.org/ 10.1103 / PhysRevD.12.397

[62] Yosef Zlochower, Roberto Gómez, Sascha Husa, Luis Lehner, and Jeffrey Winicour. “Mode coupling in the nonlinear response of black holes”. Phys. Rev. D 68, 084014 (2003).
https: / / doi.org/ 10.1103 / PhysRevD.68.084014

[63] Aaron Zimmerman and Zachary Mark. “Damped and zero-damped quasinormal modes of charged, nearly extremal black holes”. Phys. Rev. D 93, 044033 (2016).
https: / / doi.org/ 10.1103 / PhysRevD.93.044033

[64] Andrzej Rostworowski. “Towards a theory of nonlinear gravitational waves: A systematic approach to nonlinear gravitational perturbations in the vacuum”. Phys. Rev. D 96, 124026 (2017).
https: / / doi.org/ 10.1103 / PhysRevD.96.124026

[65] Laura Sberna, Pablo Bosch, William E. East, Stephen R. Green, and Luis Lehner. “Nonlinear effects in the black hole ringdown: Absorption-induced mode excitation”. Phys. Rev. D 105, 064046 (2022).
https: / / doi.org/ 10.1103 / PhysRevD.105.064046

[66] Hsin-Yuan Huang et al. “Quantum advantage in learning from experiments”. Science 376, abn7293 (2022). arXiv:2112.00778.
https://​/​doi.org/​10.1126/​science.abn7293
arXiv: 2112.00778

[67] Bruce Allen. “The Stochastic gravity wave background: Sources and detection” (1996). arXiv:gr-qc/​9604033.
arXiv: gr-qc / 9604033

[68] G. Massimo Palma, Kalle-Antti Suominen, and Artur K. Ekert. “Quantum computers and dissipation”. Proc. Roy. Soc. Lond. A 452, 567–584 (1996). arXiv:quant-ph/​9702001.
https: / / doi.org/ 10.1098 / rspa.1996.0029
arXiv: kvant-ph / 9702001

[69] V. Vedral. “Decoherence of massive superpositions induced by coupling to a quantized gravitational field” (2020). arXiv:2005.14596.
arXiv: 2005.14596

[70] Andreas Albrecht, Pedro Ferreira, Michael Joyce, and Tomislav Prokopec. “Inflation and squeezed quantum states”. Phys. Rev. D 50, 4807–4820 (1994).
https: / / doi.org/ 10.1103 / PhysRevD.50.4807

Navedel

[1] A. Addazi, J. Alvarez-Muniz, R. Alves Batista, G. Amelino-Camelia, V. Antonelli, M. Arzano, M. Asorey, J. -L. Atteia, S. Bahamonde, F. Bajardi, A. Ballesteros, B. Baret, D. M. Barreiros, S. Basilakos, D. Benisty, O. Birnholtz, J. J. Blanco-Pillado, D. Blas, J. Bolmont, D. Boncioli, P. Bosso, G. Calcagni, S. Capozziello, J. M. Carmona, S. Cerci, M. Chernyakova, S. Clesse, J. A. B. Coelho, S. M. Colak, J. L. Cortes, S. Das, V. D’Esposito, M. Demirci, M. G. Di Luca, A. di Matteo, D. Dimitrijevic, G. Djordjevic, D. Dominis Prester, A. Eichhorn, J. Ellis, C. Escamilla-Rivera, G. Fabiano, S. A. Franchino-Viñas, A. M. Frassino, D. Frattulillo, S. Funk, A. Fuster, J. Gamboa, A. Gent, L. Á. Gergely, M. Giammarchi, K. Giesel, J. -F. Glicenstein, J. Gracia-Bondía, R. Gracia-Ruiz, G. Gubitosi, E. I. Guendelman, I. Gutierrez-Sagredo, L. Haegel, S. Heefer, A. Held, F. J. Herranz, T. Hinderer, J. I. Illana, A. Ioannisian, P. Jetzer, F. R. Joaquim, K. -H. Kampert, A. Karasu Uysal, T. Katori, N. Kazarian, D. Kerszberg, J. Kowalski-Glikman, S. Kuroyanagi, C. Lämmerzahl, J. Levi Said, S. Liberati, E. Lim, I. P. Lobo, M. López-Moya, G. G. Luciano, M. Manganaro, A. Marcianò, P. Martín-Moruno, Manel Martinez, Mario Martinez, H. Martínez-Huerta, P. Martínez-Miravé, M. Masip, D. Mattingly, N. Mavromatos, A. Mazumdar, F. Méndez, F. Mercati, S. Micanovic, J. Mielczarek, A. L. Miller, M. Milosevic, D. Minic, L. Miramonti, V. A. Mitsou, P. Moniz, S. Mukherjee, G. Nardini, S. Navas, M. Niechciol, A. B. Nielsen, N. A. Obers, F. Oikonomou, D. Oriti, C. F. Paganini, S. Palomares-Ruiz, R. Pasechnik, V. Pasic, C. Pérez de los Heros, C. Pfeifer, M. Pieroni, T. Piran, A. Platania, S. Rastgoo, J. J. Relancio, M. A. Reyes, A. Ricciardone, M. Risse, M. D. Rodriguez Frias, G. Rosati, D. Rubiera-Garcia, H. Sahlmann, M. Sakellariadou, F. Salamida, E. N. Saridakis, P. Satunin, M. Schiffer, F. Schüssler, G. Sigl, J. Sitarek, J. Solà Peracaula, C. F. Sopuerta, T. P. Sotiriou, M. Spurio, D. Staicova, N. Stergioulas, S. Stoica, J. Strišković, T. Stuttard, D. Sunar Cerci, Y. Tavakoli, C. A. Ternes, T. Terzić, T. Thiemann, P. Tinyakov, M. D. C. Torri, M. Tórtola, C. Trimarelli, T. Trześniewski, A. Tureanu, F. R. Urban, E. C. Vagenas, D. Vernieri, V. Vitagliano, J. -C. Wallet, and J. D. Zornoza, “Quantum gravity phenomenology at the dawn of the multi-messenger era-A review”, Napredek v fiziki delcev in jedrski fiziki 125, 103948 (2022).

[2] Mark P. Hertzberg and Jacob A. Litterer, “Bound on Quantum Fluctuations in Gravitational Waves from LIGO”, arXiv: 2112.12159.

Zgornji citati so iz SAO / NASA ADS (zadnjič posodobljeno 2022-12-19 16:04:20). Seznam je morda nepopoln, saj vsi založniki ne dajejo ustreznih in popolnih podatkov o citiranju.

Pridobitve ni bilo mogoče Crossref citirani podatki med zadnjim poskusom 2022-12-19 16:04:18: Citiranih podatkov za 10.22331 / q-2022-12-19-879 od Crossrefa ni bilo mogoče pridobiti. To je normalno, če je bil DOI registriran pred kratkim.

Časovni žig:

Več od Quantum Journal