چیبیشیو انٹرپولیشن کا استعمال کرتے ہوئے ٹراٹر سمولیشنز کے لیے بہتر درستگی

چیبیشیو انٹرپولیشن کا استعمال کرتے ہوئے ٹراٹر سمولیشنز کے لیے بہتر درستگی

Gumaro Rendon1, Jacob Watkins2، اور ناتھن ویبی3,4

1Zapata Computing Inc., Boston, MA 02110, USA
2Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
3شعبہ کمپیوٹر سائنس، یونیورسٹی آف ٹورنٹو، ٹورنٹو، ON M5S 2E4، کینیڈا
4پیسیفک نارتھ ویسٹ نیشنل لیبارٹری، رچلینڈ، WA 99352، USA

اس کاغذ کو دلچسپ لگتا ہے یا اس پر بات کرنا چاہتے ہیں؟ SciRate پر تبصرہ کریں یا چھوڑیں۔.

خلاصہ

Quantum metrology allows for measuring properties of a quantum system at the optimal Heisenberg limit. However, when the relevant quantum states are prepared using digital Hamiltonian simulation, the accrued algorithmic errors will cause deviations from this fundamental limit. In this work, we show how algorithmic errors due to Trotterized time evolution can be mitigated through the use of standard polynomial interpolation techniques. Our approach is to extrapolate to zero Trotter step size, akin to zero-noise extrapolation techniques for mitigating hardware errors. We perform a rigorous error analysis of the interpolation approach for estimating eigenvalues and time-evolved expectation values, and show that the Heisenberg limit is achieved up to polylogarithmic factors in the error. Our work suggests that accuracies approaching those of state-of-the-art simulation algorithms may be achieved using Trotter and classical resources alone for a number of relevant algorithmic tasks.

[سرایت مواد]

Quantum computers have the potential to enhance our understanding of chemistry, materials, nuclear physics, and other scientific disciplines through improved quantum simulation. There are several available quantum algorithms for this task, and among these, Trotter formulas are often preferred due to their simplicity and low up-front costs. Unfortunately, Trotter formulas are, in theory, relatively inaccurate compared to their newer and more sophisticated competitors. Though more computational time may help, this strategy become quickly unmanageable on the noisy quantum devices of today, with limited ability to perform long, uninterrupted calculations.

To mitigate errors in Trotter simulations without increasing the quantum processing time, we use polynomials to learn the relationship between error and step size. By collecting data for different choices of step size, we can interpolate, i.e. thread, the data with a polynomial, then estimate the expected behavior for very small step sizes. We prove mathematically that our approach yields asymptotic accuracy improvements over standard Trotter for two fundamental tasks: estimating eigenvalues and estimating expectation values.

Our method is simple and practical, requiring only standard techniques in quantum and classical computation. We believe our work provides a strong theoretical foothold for further investigations of algorithmic error mitigation. Extensions of this work could occur in several directions, from eliminating artificial assumptions in our analysis to demonstrating improved quantum simulations.

► BibTeX ڈیٹا

► حوالہ جات

ہے [1] S. Lloyd, Universal quantum simulators, Science 273 (1996) 1073.
https://​doi.org/​10.1126/​science.273.5278.1073

ہے [2] M. Reiher, N. Wiebe, K.M. Svore, D. Wecker and M. Troyer, Elucidating reaction mechanisms on quantum computers, Proceedings of the National Academy of Sciences 114 (2017) 7555.
https://​doi.org/​10.1073/​pnas.161915211

ہے [3] J.D. Whitfield, J. Biamonte and A. Aspuru-Guzik, Simulation of electronic structure hamiltonians using quantum computers, Molecular Physics 109 (2011) 735.
https://​doi.org/​10.1080/​00268976.2011.552441

ہے [4] J. Lee, D.W. Berry, C. Gidney, W.J. Huggins, J.R. McClean, N. Wiebe et al., Even more efficient quantum computations of chemistry through tensor hypercontraction, PRX Quantum 2 (2021) 030305.
https://​/​doi.org/​10.1103/​PRXQuantum.2.030305

ہے [5] V. von Burg, G.H. Low, T. Häner, D.S. Steiger, M. Reiher, M. Roetteler et al., Quantum computing enhanced computational catalysis, Physical Review Research 3 (2021) 033055.
https://​/​doi.org/​10.1103/​PhysRevResearch.3.033055

ہے [6] S.P. Jordan, K.S. Lee and J. Preskill, Quantum algorithms for quantum field theories, Science 336 (2012) 1130.
https://​doi.org/​10.1126/​science.1217069

ہے [7] A.F. Shaw, P. Lougovski, J.R. Stryker and N. Wiebe, Quantum algorithms for simulating the lattice schwinger model, Quantum 4 (2020) 306.
https:/​/​doi.org/​10.22331/​q-2020-08-10-306

ہے [8] N. Klco, M.J. Savage and J.R. Stryker, Su (2) non-abelian gauge field theory in one dimension on digital quantum computers, Physical Review D 101 (2020) 074512.
https://​/​doi.org/​10.1103/​PhysRevD.101.074512

ہے [9] A.M. Childs and N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, Quantum Info. Comput. 12 (2012) 901–924.
https://​doi.org/​10.26421/​QIC12.11-12-1

ہے [10] G.H. Low, V. Kliuchnikov and N. Wiebe, Well-conditioned multiproduct hamiltonian simulation, arXiv:1907.11679 (2019).
https://​doi.org/​10.48550/​arXiv.1907.11679
آر ایکس سی: 1907.11679

ہے [11] D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma, Simulating hamiltonian dynamics with a truncated taylor series, Physical review letters 114 (2015) 090502.
https://​/​doi.org/​10.1103/​PhysRevLett.114.090502

ہے [12] G.H. Low and N. Wiebe, Hamiltonian simulation in the interaction picture, arXiv:1805.00675 (2018).
https://​doi.org/​10.48550/​arXiv.1805.00675
آر ایکس سی: 1805.00675

ہے [13] M. Kieferová, A. Scherer and D.W. Berry, Simulating the dynamics of time-dependent hamiltonians with a truncated dyson series, Physical Review A 99 (2019) 042314.
https://​/​doi.org/​10.1103/​PhysRevA.99.042314

ہے [14] G.H. Low and I.L. Chuang, Hamiltonian Simulation by Qubitization, Quantum 3 (2019) 163.
https:/​/​doi.org/​10.22331/​q-2019-07-12-163

ہے [15] R. Babbush, C. Gidney, D.W. Berry, N. Wiebe, J. McClean, A. Paler et al., Encoding electronic spectra in quantum circuits with linear t complexity, Physical Review X 8 (2018) 041015.
https://​/​doi.org/​10.1103/​PhysRevX.8.041015

ہے [16] D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders, Efficient quantum algorithms for simulating sparse hamiltonians, Communications in Mathematical Physics 270 (2006) 359–371.
https://​/​doi.org/​10.1007/​s00220-006-0150-x

ہے [17] N. Wiebe, D.W. Berry, P. Høyer and B.C. Sanders, Simulating quantum dynamics on a quantum computer, Journal of Physics A: Mathematical and Theoretical 44 (2011) 445308.
https:/​/​doi.org/​10.1088/​1751-8113/​44/​44/​445308

ہے [18] A.M. Childs, Y. Su, M.C. Tran, N. Wiebe and S. Zhu, Theory of trotter error with commutator scaling, Physical Review X 11 (2021) 011020.
https://​/​doi.org/​10.1103/​PhysRevX.11.011020

ہے [19] J. Haah, M.B. Hastings, R. Kothari and G.H. Low, Quantum algorithm for simulating real time evolution of lattice hamiltonians, SIAM Journal on Computing (2021) FOCS18.
https://​doi.org/​10.1137/​18M12315

ہے [20] M. Hagan and N. Wiebe, Composite quantum simulations, arXiv:2206.06409 (2022).
https:/​/​doi.org/​10.22331/​q-2023-11-14-1181
آر ایکس سی: 2206.06409

ہے [21] G.H. Low, Y. Su, Y. Tong and M.C. Tran, On the complexity of implementing trotter steps, arXiv:2211.09133 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.4.020323
آر ایکس سی: 2211.09133

ہے [22] G.H. Low and I.L. Chuang, Optimal hamiltonian simulation by quantum signal processing, Physical Review Letters 118 (2017).
https://​/​doi.org/​10.1103/​physrevlett.118.010501

ہے [23] S. Endo, Q. Zhao, Y. Li, S. Benjamin and X. Yuan, Mitigating algorithmic errors in a hamiltonian simulation, Phys. Rev. A 99 (2019) 012334.
https://​/​doi.org/​10.1103/​PhysRevA.99.012334

ہے [24] A.C. Vazquez, R. Hiptmair and S. Woerner, Enhancing the quantum linear systems algorithm using richardson extrapolation, ACM Transactions on Quantum Computing 3 (2022).
https://​doi.org/​10.1145/​3490631

ہے [25] A.C. Vazquez, D.J. Egger, D. Ochsner and S. Woerner, Well-conditioned multi-product formulas for hardware-friendly hamiltonian simulation, Quantum 7 (2023) 1067.
https:/​/​doi.org/​10.22331/​q-2023-07-25-1067

ہے [26] M. Suzuki, General theory of fractal path integrals with applications to many‐body theories and statistical physics, Journal of Mathematical Physics 32 (1991) 400.
https://​doi.org/​10.1063/​1.529425

ہے [27] A. Gilyén, Y. Su, G.H. Low and N. Wiebe, Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 193–204, 2019, DOI.
https://​doi.org/​10.1145/​3313276.3316366

ہے [28] C. Yi and E. Crosson, Spectral analysis of product formulas for quantum simulation, npj Quantum Information 8 (2022) 37.
https://​doi.org/​10.1038/​s41534-022-00548-w

ہے [29] A. Quarteroni, R. Sacco and F. Saleri, Numerical mathematics, vol. 37, Springer Science & Business Media (2010), 10.1007/​b98885.
https://​doi.org/​10.1007/​b98885

ہے [30] F. Piazzon and M. Vianello, Stability inequalities for lebesgue constants via markov-like inequalities, Dolomites Research Notes on Approximation 11 (2018).

ہے [31] A.P. de Camargo, On the numerical stability of newton’s formula for lagrange interpolation, Journal of Computational and Applied Mathematics 365 (2020) 112369.
https:/​/​doi.org/​10.1016/​j.cam.2019.112369

ہے [32] L. Trefethen, Six myths of polynomial interpolation and quadrature, (2011).

ہے [33] W. Gautschi, How (un)stable are vandermonde systems? asymptotic and computational analysis, in Lecture Notes in Pure and Applied Mathematics, pp. 193–210, Marcel Dekker, Inc, 1990.

ہے [34] N.J. Higham, The numerical stability of barycentric lagrange interpolation, IMA Journal of Numerical Analysis 24 (2004) 547.
https://​doi.org/​10.1093/​imanum/​24.4.547

ہے [35] J.C. Mason and D.C. Handscomb, Chebyshev polynomials, CRC press (2002), 10.1201/​9781420036114.
https://​doi.org/​10.1201/​9781420036114

ہے [36] G. Rendon, T. Izubuchi and Y. Kikuchi, Effects of cosine tapering window on quantum phase estimation, Physical Review D 106 (2022) 034503.
https://​/​doi.org/​10.1103/​PhysRevD.106.034503

ہے [37] L.N. Trefethen, Approximation Theory and Approximation Practice, Extended Edition, SIAM (2019), 10.1137/​1.9781611975949.
https://​doi.org/​10.1137/​1.9781611975949

ہے [38] F.L. Bauer and C.T. Fike, Norms and exclusion theorems, Numer. Math. 2 (1960) 137–141.
https://​doi.org/​10.1007/​BF01386217

ہے [39] S. Blanes, F. Casas, J.-A. Oteo and J. Ros, The magnus expansion and some of its applications, Physics reports 470 (2009) 151.
https://​/​doi.org/​10.1016/​j.physrep.2008.11.001

ہے [40] N. Klco and M.J. Savage, Minimally entangled state preparation of localized wave functions on quantum computers, Physical Review A 102 (2020).
https://​/​doi.org/​10.1103/​physreva.102.012612

ہے [41] J.J. García-Ripoll, Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations, Quantum 5 (2021) 431.
https:/​/​doi.org/​10.22331/​q-2021-04-15-431

ہے [42] W. Górecki, R. Demkowicz-Dobrzański, H.M. Wiseman and D.W. Berry, $pi$-corrected heisenberg limit, Physical review letters 124 (2020) 030501.
https://​/​doi.org/​10.1103/​PhysRevLett.124.030501

ہے [43] D. Grinko, J. Gacon, C. Zoufal and S. Woerner, Iterative quantum amplitude estimation, npj Quantum Information 7 (2021) 52 [1912.05559].
https:/​/​doi.org/​10.1038/​s41534-021-00379-1
آر ایکس سی: 1912.05559

ہے [44] N. Wiebe, D. Berry, P. Høyer and B.C. Sanders, Higher order decompositions of ordered operator exponentials, Journal of Physics A: Mathematical and Theoretical 43 (2010) 065203.
https:/​/​doi.org/​10.1088/​1751-8113/​43/​6/​065203

ہے [45] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge university press (2012), 10.1017/​CBO9780511810817.
https://​doi.org/​10.1017/​CBO9780511810817

ہے [46] M. Chiani, D. Dardari and M.K. Simon, New exponential bounds and approximations for the computation of error probability in fading channels, IEEE Transactions on Wireless Communications 2 (2003) 840.
https://​/​doi.org/​10.1109/​TWC.2003.814350

ہے [47] J.M. Borwein and P.B. Borwein, Pi and the AGM: a study in the analytic number theory and computational complexity, Wiley-Interscience (1987).

ہے [48] B.L. Higgins, D.W. Berry, S.D. Bartlett, H.M. Wiseman and G.J. Pryde, Entanglement-free Heisenberg-limited phase estimation, Nature 450 (2007) 393.
https://​doi.org/​10.1038/​nature06257

ہے [49] R.B. Griffiths and C.-S. Niu, Semiclassical Fourier Transform for Quantum Computation, Physical Review Letters 76 (1996) 3228.
https://​/​doi.org/​10.1103/​PhysRevLett.76.3228

ہے [50] A.Y. Kitaev, Quantum measurements and the abelian stabilizer problem, quant-ph/​9511026 (1995).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​9511026
arXiv:quant-ph/9511026

ہے [51] D.S. Abrams and S. Lloyd, Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors, Physical Review Letters 83 (1999) 5162.
https://​/​doi.org/​10.1103/​PhysRevLett.83.5162

ہے [52] J. Watkins, N. Wiebe, A. Roggero and D. Lee, Time-dependent hamiltonian simulation using discrete clock constructions, arXiv:2203.11353 (2022).
https://​doi.org/​10.48550/​arXiv.2203.11353
آر ایکس سی: 2203.11353

ہے [53] T.D. Ahle, Sharp and simple bounds for the raw moments of the binomial and poisson distributions, Statistics & Probability Letters 182 (2022) 109306.
https:/​/​doi.org/​10.1016/​j.spl.2021.109306

ہے [54] T. Rivlin, Chebyshev Polynomials, Dover Books on Mathematics, Dover Publications (2020).

کی طرف سے حوالہ دیا گیا

[1] Dean Lee, “Quantum techniques for eigenvalue problems”, یورپی فزیکل جرنل A 59 11, 275 (2023).

[2] Tatsuhiko N. Ikeda, Hideki Kono, and Keisuke Fujii, “Trotter24: A precision-guaranteed adaptive stepsize Trotterization for Hamiltonian simulations”, آر ایکس سی: 2307.05406, (2023).

[3] Hans Hon Sang Chan, Richard Meister, Matthew L. Goh, and Bálint Koczor, “Algorithmic Shadow Spectroscopy”, آر ایکس سی: 2212.11036, (2022).

[4] Sergiy Zhuk, Niall Robertson, and Sergey Bravyi, “Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation”, آر ایکس سی: 2306.12569, (2023).

[5] Zhicheng Zhang، Qisheng Wang، اور Mingsheng Ying، "Hamiltonian Simulation کے لیے متوازی کوانٹم الگورتھم"، کوانٹم 8, 1228 (2024).

[6] Lea M. Trenkwalder, Eleanor Scerri, Thomas E. O'Brien, and Vedran Dunjko, "کمپیلیشن آف پروڈکٹ فارمولہ Hamiltonian simulation via reinforcement Learning"، آر ایکس سی: 2311.04285, (2023).

[7] گومارو رینڈن اور پیٹر ڈی جانسن، "کم گہرائی گاوسی ریاستی توانائی کا تخمینہ"، آر ایکس سی: 2309.16790, (2023).

[8] گریگوری بوائیڈ، "کموٹنگ آپریٹرز کے ذریعے LCU کا کم اوور ہیڈ متوازی"، آر ایکس سی: 2312.00696, (2023).

مذکورہ بالا اقتباسات سے ہیں۔ SAO/NASA ADS (آخری بار کامیابی کے ساتھ 2024-02-27 02:40:25)۔ فہرست نامکمل ہو سکتی ہے کیونکہ تمام ناشرین مناسب اور مکمل حوالہ ڈیٹا فراہم نہیں کرتے ہیں۔

On Crossref کی طرف سے پیش خدمت کاموں کے حوالے سے کوئی ڈیٹا نہیں ملا (آخری کوشش 2024-02-27 02:40:24)۔

ٹائم اسٹیمپ:

سے زیادہ کوانٹم جرنل