Qibolab: et hybridt kvanteoperativsystem med åben kildekode

Qibolab: et hybridt kvanteoperativsystem med åben kildekode

Stavros Efthymiou1, Alvaro Orgaz-Fuertes1, Rodolfo Carobene2,3,1, Juan Cereijo1,4, Andrea Pasquale1,5,6, Sergi Ramos-Calderer1,4, Simone Bordoni1,7,8, David Fuentes-Ruiz1, Alessandro Candido5,6,9, Edoardo Pedicillo1,5,6, Matteo Robbiati5,9, Yuanzheng Paul Tan10, Jadwiga Wilkens1, Ingo Roth1, José Ignacio Latorre1,11,4, og Stefano Carrazza9,5,6,1

1Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.
2Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Italien.
3INFN – Sezione di Milano Bicocca, I-20126 Milano, Italien.
4Departament de Física Quàntica i Astrofísica og Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, ​​Barcelona, ​​Spanien.
5TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano, Italien
6INFN, Sezione di Milano, I-20133 Milano, Italien.
7Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rom, Italien
8La Sapienza Universitet i Rom, afd. for fysik, Rom, Italien
9CERN, Institut for Teoretisk Fysik, CH-1211 Geneve 23, Schweiz.
10Afdeling for fysik og anvendt fysik, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
11Center for Quantum Technologies, National University of Singapore, Singapore.

Finder du denne artikel interessant eller vil du diskutere? Scite eller efterlade en kommentar på SciRate.

Abstrakt

Vi præsenterer $texttt{Qibolab}$, et open source-softwarebibliotek til kvantehardwarestyring integreret med $texttt{Qibo}$ kvantecomputer-middleware-rammeværket. $texttt{Qibolab}$ leverer det softwarelag, der kræves til automatisk at udføre kredsløbsbaserede algoritmer på brugerdefinerede selv-hostede kvantehardwareplatforme. Vi introducerer et sæt objekter designet til at give programmatisk adgang til kvantestyring gennem pulsorienterede drivere til instrumenter, transpilere og optimeringsalgoritmer. $texttt{Qibolab}$ gør det muligt for eksperimentalister og udviklere at uddelegere alle komplekse aspekter af hardwareimplementering til biblioteket, så de kan standardisere implementeringen af ​​kvanteberegningsalgoritmer på en udvidelig hardwareagnostisk måde ved at bruge superledende qubits som den første officielt understøttede kvanteteknologi. Vi beskriver først status for alle komponenter i biblioteket, derefter viser vi eksempler på kontrolopsætning til superledende qubits-platforme. Endelig præsenterer vi succesfulde applikationsresultater relateret til kredsløbsbaserede algoritmer.

Vi præsenterer Qibolab, et open source-softwarebibliotek til kvantehardwarestyring integreret med Qibo, et hybridt kvanteoperativsystem. Qibolab leverer det softwarelag, der kræves til automatisk at udføre kredsløbsbaserede algoritmer på brugerdefinerede selv-hostede kvantehardwareplatforme. Denne software gør det muligt for eksperimentalister og kvantesoftwareudviklere at uddelegere alle komplekse aspekter af hardwareimplementering til biblioteket, så de kan standardisere implementeringen af ​​kvantecomputeralgoritmer på en udvidelig hardwareagnostisk måde.

► BibTeX-data

► Referencer

[1] R. Brun og F. Rademakers, Nukleare instrumenter og metoder i fysikforskning Sektion A: Acceleratorer, spektrometre, detektorer og tilhørende udstyr 389, 81 (1997), nye regneteknikker i fysikforskning V.
https:/​/​doi.org/​10.1016/​S0168-9002(97)00048-X

[2] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli og M. Zaro, Journal of High Energy Physics 2014, 10.1007/​jhep07(2014)079 (2014).
https://​/​doi.org/​10.1007/​jhep07(2014)079

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, GS Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp , G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke , Y. Yu og X. Zheng, TensorFlow: Maskinlæring i stor skala på heterogene systemer (2015), software tilgængelig fra tensorflow.org.
https://www.tensorflow.org/​

[4] Cirq, en pythonramme til at skabe, redigere og påkalde Noisy Intermediate Scale Quantum (NISQ)-kredsløb (2018).
https://​/​github.com/​quantumlib/​Cirq

[5] M. Broughton og et al., Tensorflow quantum: A software framework for quantum machine learning (2020).
https://​/​doi.org/​10.48550/​arXiv.2003.02989

[6] H. Abraham og et al., Qiskit: An open source framework for quantum computing (2019).
https://​/​doi.org/​10.5281/​zenodo.2562110

[7] RS Smith, MJ Curtis og WJ Zeng, En praktisk kvanteinstruktionssætarkitektur (2016).
https://​/​doi.org/​10.48550/​arXiv.1608.03355

[8] GG Guerreschi, J. Hogaboam, F. Baruffa og NPD Sawaya, Quantum Science and Technology 5, s. 034007 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​ab8505

[9] A. Kelly, Simulering af kvantecomputere ved hjælp af opencl (2018).
https://​/​doi.org/​10.48550/​arXiv.1805.00988

[10] Qulacs-udviklerne, Qulacs (2018).
https://​/​github.com/​qulacs/​qulacs

[11] T. Jones, A. Brown, I. Bush og SC Benjamin, Scientific Reports 9, 10.1038/​s41598-019-47174-9 (2019).
https:/​/​doi.org/​10.1038/​s41598-019-47174-9

[12] P. Zhang, J. Yuan og X. Lu, i Algorithms and Architectures for Parallel Processing, redigeret af G. Wang, A. Zomaya, G. Martinez og K. Li (Springer International Publishing, Cham, 2015) pp. 241-256.
https:/​/​doi.org/​10.1007/​978-3-319-27119-4_17

[13] DS Steiger, T. Häner og M. Troyer, Quantum 2, 49 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-31-49

[14] Q# programmeringssproget (2017).
https://​/​docs.microsoft.com/​en-us/​quantum/​user-guide/​?view=qsharp-preview

[15] A. Zulehner og R. Wille, Avanceret simulering af kvanteberegninger (2017).
https://​/​doi.org/​10.48550/​arXiv.1707.00865

[16] E. Pednault og et al., Pareto-effektiv kvantekredsløbssimulering ved brug af tensorkontraktionsudsættelse (2017).
https://​/​doi.org/​10.48550/​arXiv.1710.05867

[17] S. Bravyi og D. Gosset, Physical Review Letters 116, s. 250501 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.116.250501

[18] K. De Raedt og et al., Computer Physics Communications 176, s. 121 (2007).
https://​/​doi.org/​10.1016/​j.cpc.2006.08.007

[19] ES Fried og et al., PLOS ONE 13, e0208510 (2018).
https://​/​doi.org/​10.1371/​journal.pone.0208510

[20] B. Villalonga og et al., npj Quantum Information 5, 10.1038/​s41534-019-0196-1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0196-1

[21] X.-Z. Luo, J.-G. Liu, P. Zhang og L. Wang, Yao.jl: Udvidelig, effektiv ramme for kvantealgoritmedesign (2019), [quant-ph].
https:/​/​doi.org/​10.22331/​q-2020-10-11-341

[22] V. Bergholm og et al., Pennylane: Automatic differentiation of hybrid quantum-classical computations (2018), arXiv:1811.04968 [quant-ph].
arXiv: 1811.04968

[23] J. Doi og et al., i Proceedings of the 16th ACM International Conference on Computing Frontiers, CF '19 (Association for Computing Machinery, New York, NY, USA, 2019) s. 85-93.
https://​/​doi.org/​10.1145/​3310273.3323053

[24] M. Möller og M. Schalkers, i Computational Science – ICCS 2020, redigeret af VV Krzhizhanovskaya, G. Závodszky, MH Lees, JJ Dongarra, PMA Sloot, S. Brissos og J. Teixeira (Springer International Publishing, Cham, 2020) s. 451–464.
https:/​/​doi.org/​10.1007/​978-3-030-50433-5_35

[25] T. Jones og S. Benjamin, Quantum Science and Technology 5, 034012 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​ab8506

[26] Z.-Y. Chen og et al., Science Bulletin 63, s. 964-971 (2018).
https://​/​doi.org/​10.1016/​j.scib.2018.06.007

[27] H. Bian, J. Huang, R. Dong, Y. Guo og X. Wang, i Algorithms and Architectures for Parallel Processing, redigeret af M. Qiu (Springer International Publishing, 2020) s. 111-125.
https:/​/​doi.org/​10.1007/​978-3-030-60239-0_8

[28] I. Meyerov, A. Liniov, M. Ivanchenko og S. Denisov, Simulering af kvantedynamik: Evolution of algorithms in the hpc context (2020), arXiv:2005.04681 [quant-ph].
arXiv: 2005.04681

[29] AA Moueddene, N. Khammassi, K. Bertels og CG Almudever, Realistisk simulering af kvanteberegning ved hjælp af enheds- og målekanaler (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.052608

[30] Z. Wang og et al., En kvantekredsløbssimulator og dens anvendelser på sunway taihulight supercomputer (2020).
https://​/​doi.org/​10.1038/​s41598-020-79777-y

[31] JH Nielsen, M. Astafev, WH Nielsen, D. Vogel, lakhotiaharshit, A. Johnson, A. Hardal, Akshita, sohail chatoor, F. Bonabi, Liang, G. Ungaretti, S. Pauka, T. Morgan, Adriaan, P Eendebak, B. Nijholt, qSaevar, P. Eendebak, S. Droege, Samantha, J. Darulova, R. van Gulik, N. Pearson, ThorvaldLarsen og A. Corna, Qcodes/​qcodes: Qcodes 0.43.0 (2024) ).
https://​/​doi.org/​10.5281/​zenodo.10459033

[32] M. Rol, C. Dickel, S. Asaad, N. Langford, C. Bultink, R. Sagastizabal, N. Langford, G. de Lange, X. Fu, S. de Jong, F. Luthi og W. Vlothuizen , DiCarloLab-Delft/​PycQED_py3: Initial public release (2016).
https://​/​doi.org/​10.5281/​zenodo.160327

[33] Keysight, Labber, https://​/​www.keysight.com/​us/​en/​lib/​software-detail/​instrument-firmware-software/​labber-3113052.html (2022).
https://​/​www.keysight.com/​us/​da/​lib/​software-detail/​instrument-firmware-software/​labber-3113052.html

[34] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, a.-M. . í, . Diego Garcí, A. Garcia-Saez, JI Latorre og S. Carrazza, Quantum Science and Technology 7, 015018 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[35] S. Efthymiou, M. Lazzarin, A. Pasquale og S. Carrazza, Quantum 6, 814 (2022).
https:/​/​doi.org/​10.22331/​q-2022-09-22-814

[36] S. Carrazza, S. Efthymiou, M. Lazzarin og A. Pasquale, Journal of Physics: Conference Series 2438, 012148 (2023).
https:/​/​doi.org/​10.1088/​1742-6596/​2438/​1/​012148

[37] S. Efthymiou et al., qiboteam/​qibo: Qibo 0.1.12 (2023a).
https://​/​doi.org/​10.5281/​zenodo.7736837

[38] S. Efthymiou et al., qiboteam/​qibolab: Qibolab 0.0.2 (2023b).
https://​/​doi.org/​10.5281/​zenodo.7748527

[39] J. Preskill, (2018a).
http://​/​theory.caltech.edu/​~preskill/​ph219/​chap3_15.pdf

[40] A. He, B. Nachman, WA de Jong og CW Bauer, Phys. Rev. A 102, 012426 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.012426

[41] A. Sopena, MH Gordon, G. Sierra og E. López, Quantum Science and Technology 6, 045003 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac0e7a

[42] E. van den Berg, ZK Minev og K. Temme, Physical Review A 105, 10.1103/​physreva.105.032620 (2022).
https://​/​doi.org/​10.1103/​physreva.105.032620

[43] D. Coppersmith, En omtrentlig fourier-transformation, der er nyttig i kvantefaktorering (2002a).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv:quant-ph/0201067

[44] A. Peruzzo og et al., Nature communications 5, s. 4213 (2014).
https://​/​doi.org/​10.1038/​ncomms5213

[45] A. Garcia-Saez og JI Latorre, Adressering af svære klassiske problemer med adiabatisk assisterede variationskvanteegenopløsere (2018).
https://​/​doi.org/​10.48550/​arXiv.1806.02287

[46] E. Farhi, J. Goldstone og S. Gutmann, A quantum approximate optimization algorithm (2014).
https://​/​doi.org/​10.48550/​arXiv.1411.4028

[47] AB Magann, KM Rudinger, MD Grace og M. Sarovar, Physical Review Letters 129, 10.1103/​physrevlett.129.250502 (2022).
https://​/​doi.org/​10.1103/​physrevlett.129.250502

[48] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, DM Grabowska og S. Carrazza, Quantum 6, 777 (2022).
https:/​/​doi.org/​10.22331/​q-2022-08-17-777

[49] LK Grover, En hurtig kvantemekanisk algoritme til databasesøgning (1996).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​9605043
arXiv:quant-ph/9605043

[50] S. Hadfield, Z. Wang, BO Gorman, E. Rieffel, D. Venturelli og R. Biswas, Algorithms 12, 34 (2019).
https://​/​doi.org/​10.3390/​a12020034

[51] E. Farhi, J. Goldstone, S. Gutmann og M. Sipser, Kvanteberegning ved adiabatisk evolution (2000).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0001106
arXiv:quant-ph/0001106

[52] Qibo: API-dokumentationseksempler, https://​/​qibo.science/​qibo/​stable/​api-reference/​index.html.
https://​/​qibo.science/​qibo/​stable/​api-reference/​index.html

[53] J. Preskill, Quantum 2, 79 (2018b).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[54] TE Oliphant, Guide til NumPy (Trelgol, 2006).

[55] DE Rumelhart, GE Hinton og RJ Williams, Nature 323, 533 (1986).
https://​/​doi.org/​10.1038/​323533a0

[56] SK Lam, A. Pitrou og S. Seibert, i Proceedings of the Second Workshop on the LLVM Compiler Infrastructure i HPC (2015) s. 1-6.
https://​/​doi.org/​10.1145/​2833157.2833162

[57] R. Okuta, Y. Unno, D. Nishino, S. Hido og C. Loomis, i Proceedings of Workshop on Machine Learning Systems (LearningSys) i den 2017. årlige konference om neurale informationsbehandlingssystemer (NIPS) (XNUMX) .
http://​/​learningsys.org/​nips17/​assets/​papers/​paper_16.pdf

[58] T. cuQuantum udviklingsteam, cuquantum (2023), hvis du bruger denne software, bedes du citere det som nedenfor.
https://​/​doi.org/​10.5281/​zenodo.7806810

[59] D. Coppersmith, En omtrentlig fourier-transformation, der er nyttig i kvantefaktorering (2002b).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv:quant-ph/0201067

[60] E. Bernstein og U. Vazirani, SIAM Journal on Computing 26, 1411 (1997).
https://​/​doi.org/​10.1137/​S0097539796300921

[61] J. Biamonte og V. Bergholm, Tensor-netværk i en nøddeskal (2017).
https://​/​doi.org/​10.48550/​arXiv.1708.00006

[62] X. Yuan, J. Sun, J. Liu, Q. Zhao og Y. Zhou, Physical Review Letters 127, 10.1103/​physrevlett.127.040501 (2021).
https://​/​doi.org/​10.1103/​physrevlett.127.040501

[63] W. Huggins, P. Patil, B. Mitchell, KB Whaley og EM Stoudenmire, Quantum Science and Technology 4, 024001 (2019).
https:/​/​doi.org/​10.1088/​2058-9565/​aaea94

[64] R. Orús, Annals of Physics 349, 117 (2014).
https://​/​doi.org/​10.1016/​j.aop.2014.06.013

[65] J. Biamonte, Forelæsninger om kvantetensornetværk (2020).
https://​/​doi.org/​10.48550/​arXiv.1912.10049

[66] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas, S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen, J. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, CM Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. Harrigan, M. Hartmann, A. Ho, MR Hoffmann, T. Huang, T. Humble, S. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, JR McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen , M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, MY Niu, E. Ostby, A. Petukhov, J. Platt, C. Quintana, EG Rieffel, P. Roushan, N. Rubin , D. Sank, KJ Satzinger, V. Smelyanskiy, KJ Sung, M. Trevithick, A. Vainsencher, B. Villalonga, T. White, ZJ Yao, P. Yeh, A. Zalcman, H. Neven og J. Martinis , Nature 574, 505-510 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[67] YY Gao, MA Rol, S. Touzard og C. Wang, PRX Quantum 2, 040202 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.040202

[68] D. Leibfried, R. Blatt, C. Monroe og D. Wineland, Rev. Mod. Phys. 75, 281 (2003).
https://​/​doi.org/​10.1103/​RevModPhys.75.281

[69] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond og C. Jurczak, Quantum 4, 327 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-21-327

[70] J. Koch, TM Yu, J. Gambetta, AA Houck, DI Schuster, J. Majer, A. Blais, MH Devoret, SM Girvin og RJ Schoelkopf, Physical Review A 76, 10.1103/physreva.76.042319 (2007).
https://​/​doi.org/​10.1103/​physreva.76.042319

[71] BD Josephson, fys. Lett. 1, 251 (1962).
https:/​/​doi.org/​10.1016/​0031-9163(62)91369-0

[72] T. Alexander, N. Kanazawa, DJ Egger, L. Capelluto, CJ Wood, A. Javadi-Abhari og D. C McKay, Quantum Science and Technology 5, 044006 (2020).
https://​/​doi.org/​10.1088/​2058-9565/​aba404

[73] H. Silvério, S. Grijalva, C. Dalyac, L. Leclerc, PJ Karalekas, N. Shammah, M. Beji, L.-P. Henry og L. Henriet, Quantum 6, 629 (2022).
https:/​/​doi.org/​10.22331/​q-2022-01-24-629

[74] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​labone-q (2023a).
https://​/​www.zhinst.com/​others/​da/​quantum-computing-systems/​labone-q

[75] L. Ella, L. Leandro, O. Wertheim, Y. Romach, R. Szmuk, Y. Knol, N. Ofek, I. Sivan og Y. Cohen, Quantum-classical processing and benchmarking at the pulse-level (2023) ).
https://​/​doi.org/​10.48550/​arXiv.2303.03816

[76] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​ (2023a).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​

[77] M. Naghiloo, Introduktion til eksperimentel kvantemåling med superledende qubits (2019).
https://​/​doi.org/​10.48550/​arXiv.1904.09291

[78] A. Pasquale et al., qiboteam/​qibocal: Qibocal 0.0.1 (2023a).
https://​/​doi.org/​10.5281/​zenodo.7662185

[79] A. Pasquale, S. Efthymiou, S. Ramos-Calderer, J. Wilkens, I. Roth og S. Carrazza, Mod en open source-ramme til at udføre kvantekalibrering og karakterisering (2023b).
https://​/​doi.org/​10.48550/​arXiv.2303.10397

[80] M. Kliesch og I. Roth, PRX Quantum 2, 010201 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.010201

[81] J. Emerson, R. Alicki og K. Zyczkowski, J. Opt. B 7, S347 (2005).
https:/​/​doi.org/​10.1088/​1464-4266/​7/​10/​021

[82] E. Knill, D. Leibfried, R. Reichle, J. Britton, RB Blakestad, JD Jost, C. Langer, R. Ozeri, S. Seidelin og DJ Wineland, Physical Review A 77, 10.1103/​physreva.77.012307 ( 2008).
https://​/​doi.org/​10.1103/​physreva.77.012307

[83] B. Lévi, CC López, J. Emerson og DG Cory, Phys. Rev. A 75, 022314 (2007).
https://​/​doi.org/​10.1103/​PhysRevA.75.022314

[84] C. Dankert, R. Cleve, J. Emerson og E. Livine, Phys. Rev. A 80, 012304 (2009).
https://​/​doi.org/​10.1103/​PhysRevA.80.012304

[85] J. Helsen, I. Roth, E. Onorati, AH Werner og J. Eisert, arXiv:2010.07974 3, 020357 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.020357
arXiv: 2010.07974

[86] AP et al., Under forberedelse (2023).

[87] F. Motzoi, JM Gambetta, P. Rebentrost og FK Wilhelm, Phys. Rev. Lett. 103, 110501 (2009).
https://​/​doi.org/​10.1103/​PhysRevLett.103.110501

[88] J. Heinsoo, CK Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J.-C. Besse, A. Poto čnik, A. Wallraff og C. Eichler, Phys. Rev. Appl. 10, 034040 (2018).
https://​/​doi.org/​10.1103/​PhysRevApplied.10.034040

[89] Y. Xu, G. Huang, J. Balewski, A. Morvan, K. Nowrouzi, DI Santiago, RK Naik, B. Mitchell og I. Siddiqi, ACM Transactions on Quantum Computing 4, 10.1145/​3529397 (2022).
https://​/​doi.org/​10.1145/​3529397

[90] J. Kelly, P. O'Malley, M. Neeley, H. Neven og JM Martinis, Physical qubit calibration on a directed acyclic graph (2018).
https://​/​doi.org/​10.48550/​arXiv.1803.03226

[91] Qibolab: Platformoprettelse, https://​/​qibo.science/​qibolab/​stable/​tutorials/​lab.html.
https://​/​qibo.science/​qibolab/​stable/​tutorials/​lab.html

[92] Qibolab: Platformserialisering, https://​/​qibo.science/​qibolab/​stable/​api-reference/​qibolab.html#module-qibolab.serialize.
https://​/​qibo.science/​qibolab/​stable/​api-reference/​qibolab.html#module-qibolab.serialize

[93] Qibolab: Resultatformater, https://​/​qibo.science/​qibolab/​stable/​main-documentation/​qibolab.html#results.
https://​/​qibo.science/​qibolab/​stable/​main-documentation/​qibolab.html#results

[94] Qblox, https://www.qblox.com.
https://www.qblox.com

[95] QuantumMachines, https://www.quantum-machines.co/.
https://www.quantum-machines.co/​

[96] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​qccs (2023b).
https://​/​www.zhinst.com/​others/​da/​quantum-computing-systems/​qccs

[97] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton, C. Bradford, S. Uemura, S. Zorzetti, S. Montella, G. Cancelo, S. Sussman, A. Houck, S. Saxena, H. Arnaldi, A. Agrawal, H. Zhang, C. Ding og DI Schuster, Review of Scientific Instruments 93, 10.1063/​5.0076249 (2022).
https://​/​doi.org/​10.1063/​5.0076249

[98] R. Carobene et al., qiboteam/​qibosoq: Qibosoq 0.0.3 (2023).
https://​/​doi.org/​10.5281/​zenodo.8126172

[99] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​getting_started/​product_overview.html#cluster.
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​getting_started/​product_overview.html#cluster

[100] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qrm_rf.html (2023b).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​cluster/​qrm_rf.html

[101] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm_rf.html (2023c).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​cluster/​qcm_rf.html

[102] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm.html (2023d).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​cluster/​qcm.html

[103] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​cluster/​synchronization.html#synq.
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​cluster/​synchronization.html#synq

[104] Qcodes, https://​/​qcodes.github.io/​Qcodes/​ (2023).
https://​/​qcodes.github.io/​Qcodes/​

[105] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​tutorials/​q1asm_tutorials.html (2023e).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​da/​master/​tutorials/​q1asm_tutorials.html

[106] OPX+, https://www.quantum-machines.co/​products/​opx/​.
https://www.quantum-machines.co/​products/​opx/​

[107] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​shfqc-qubit-controller (2023c).
https://​/​www.zhinst.com/​others/​da/​products/​shfqc-qubit-controller

[108] J. Herrmann, C. Hellings, S. Lazar, F. Pfäffli, F. Haupt, T. Thiele, DC Zanuz, GJ Norris, F. Heer, C. Eichler og A. Wallraff, Frequency up-conversion schemes for controlling superledende qubits (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.02513

[109] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​hdawg-arbitrary-waveform-generator (2023d).
https://​/​www.zhinst.com/​others/​da/​products/​hdawg-arbitrary-waveform-generator

[110] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​pqsc-programmable-quantum-system-controller (2023e).
https://​/​www.zhinst.com/​others/​da/​products/​pqsc-programmable-quantum-system-controller

[111] Xilinx-(AMD), Rfsoc 4×2-specifikationer, https://​/​www.xilinx.com/​support/​university/​xup-boards/​RFSoC4x2.html (2022a).
https://​/​www.xilinx.com/​support/​university/​xup-boards/​RFSoC4x2.html

[112] Xilinx-(AMD), Zcu111-specifikationer, https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu111.html (2022b).
https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu111.html

[113] Xilinx-(AMD), Zcu216-specifikationer, https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu216.html (2022c).
https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu216.html

[114] PSV Naidu, Modern Digital Signal Processing (Alpha Science International, 2003).

[115] A. Barenco, CH Bennett, R. Cleve, DP DiVincenzo, N. Margolus, P. Shor, T. Sleator, JA Smolin og H. Weinfurter, Physical Review A 52, 3457 (1995).
https://​/​doi.org/​10.1103/​physreva.52.3457

[116] T. Ito, N. Kakimura, N. Kamiyama, Y. Kobayashi og Y. Okamoto, Algoritmisk teori om qubit-routing (2023).
https://​/​doi.org/​10.48550/​arXiv.2305.02059

[117] S. Heng, D. Kim, S. Heng og Y. Han, i 2022 37th International Technical Conference on Circuits/​Systems, Computers and Communications (ITC-CSCC) (2022) s. 1-3.
https://​/​doi.org/​10.1109/​ITC-CSCC55581.2022.9894863

[118] P. Zhu, S. Zheng, L. Wei, C. Xueyun, Z. Guan og S. Feng, Quantum Information Processing 21 (2022).
https:/​/​doi.org/​10.1007/​s11128-022-03698-0

[119] T. Itoko, R. Raymond, T. Imamichi og A. Matsuo, Optimization of quantum circuit mapping using gate transformation and commutation (2019).
https://​/​doi.org/​10.48550/​arXiv.1907.02686

[120] G. Vidal og CM Dawson, Physical Review A 69, 10.1103/​physreva.69.010301 (2004).
https://​/​doi.org/​10.1103/​physreva.69.010301

[121] T. Fösel, MY Niu, F. Marquardt og L. Li, Kvantekredsløbsoptimering med dyb forstærkningslæring (2021).
https://​/​doi.org/​10.48550/​arXiv.2103.07585

[122] G. Li, Y. Ding og Y. Xie, Takling the qubit mapping problem for nisq-era quantum devices (2019).
https://​/​doi.org/​10.48550/​arXiv.1809.02573

[123] Y. Kharkov, A. Ivanova, E. Mikhantiev og A. Kotelnikov, Arline benchmarks: Automated benchmarking platform for quantum compilers (2022).
https://​/​doi.org/​10.48550/​arXiv.2202.14025

[124] Qibolab benchmarks, https://​/​github.com/​qiboteam/​qibolab-benchmarks/​tree/​v0.1.0.
https://​/​github.com/​qiboteam/​qibolab-benchmarks/​tree/​v0.1.0

[125] JF Clauser, MA Horne, A. Shimony og RA Holt, Phys. Rev. Lett. 23, 880 (1969).
https://​/​doi.org/​10.1103/​PhysRevLett.23.880

[126] JS Bell, Physics Physique Fizika 1, 195 (1964).
https://​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[127] M. Schuld, I. Sinayskiy og F. Petruccione, Contemporary Physics 56, 172 (2014).
https://​/​doi.org/​10.1080/​00107514.2014.964942

[128] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe og S. Lloyd, Nature 549, 195 (2017).
https://​/​doi.org/​10.1038/​nature23474

[129] K. Mitarai, M. Negoro, M. Kitagawa og K. Fujii, Physical Review A 98, 10.1103/​physreva.98.032309 (2018).
https://​/​doi.org/​10.1103/​physreva.98.032309

[130] M. Cerezo, A. Arrasmith, R. Babbush, SC Benjamin, S. Endo, K. Fujii, JR McClean, K. Mitarai, X. Yuan, L. Cincio og PJ Coles, Nature Reviews Physics 3, 625 (2021) ).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[131] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio og PJ Coles, Nature Communications 12, 10.1038/​s41467-021-27045-6 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-27045-6

[132] A. Pérez-Salinas, J. Cruz-Martinez, AA Alhajri og S. Carrazza, Physical Review D 103, 10.1103/​physrevd.103.034027 (2021).
https://​/​doi.org/​10.1103/​physrevd.103.034027

[133] M. Robbiati, JM Cruz-Martinez og S. Carrazza, Bestemmelse af sandsynlighedstæthedsfunktioner med adiabatisk kvanteberegning (2023).
https://​/​doi.org/​10.48550/​arXiv.2303.11346

[134] S. Bordoni, D. Stanev, T. Santantonio og S. Giagu, Particles 6, 297 (2023).
https:/​/​doi.org/​10.3390/​particles6010016

[135] M. Robbiati, S. Efthymiou, A. Pasquale og S. Carrazza, En kvanteanalytisk adam-nedstigning gennem parameterskifteregel ved hjælp af qibo (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.10787

[136] RD Ball, S. Carrazza, J. Cruz-Martinez, LD Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, JI Latorre, ER Nocera, RL Pearson, J. Rojo, R. Stegeman, C. Schwan, M. Ubiali, C. Voisey og M. Wilson, The European Physical Journal C 82, 10.1140/​epjc/​s10052-022-10328-7 (2022).
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10328-7

[137] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster og JI Latorre, Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[138] DP Kingma og J. Ba, Adam: En metode til stokastisk optimering (2017).
https://​/​doi.org/​10.48550/​arXiv.1412.6980

[139] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac og N. Killoran, Physical Review A 99, 10.1103/​physreva.99.032331 (2019).
https://​/​doi.org/​10.1103/​physreva.99.032331

Citeret af

[1] Jorge J. Martínez de Lejarza, Leandro Cieri, Michele Grossi, Sofia Vallecorsa og Germán Rodrigo, "Loop Feynman integration on a quantum computer", arXiv: 2401.03023, (2024).

[2] Alessandro D'Elia, Boulos Alfakes, Anas Alkhazaleh, Leonardo Banchi, Matteo Beretta, Stefano Carrazza, Fabio Chiarello, Daniele Di Gioacchino, Andrea Giachero, Felix Henrich, Alex Stephane Piedjou Komnang, Carlo Ligi, Giovanni Maccarrone, Massimo Maccarrone, Emanuele Palumbo, Andrea Pasquale, Luca Piersanti, Florent Ravaux, Alessio Rettaroli, Matteo Robbiati, Simone Tocci og Claudio Gatti, "Karakterisering af en Transmon Qubit i et 3D-hulrum til kvantemaskineindlæring og fotontælling", arXiv: 2402.04322, (2024).

[3] Chunyang Ding, Martin Di Federico, Michael Hatridge, Andrew Houck, Sebastien Leger, Jeronimo Martinez, Connie Miao, David I. Schuster, Leandro Stefanazzi, Chris Stoughton, Sara Sussman, Ken Treptow, Sho Uemura, Neal Wilcer, Helin Zhang , Chao Zhou og Gustavo Cancelo, "Eksperimentelle fremskridt med QICK (Quantum Instrumentation Control Kit) til superledende kvantehardware", arXiv: 2311.17171, (2023).

[4] Steve Abel, Juan Carlos Criado og Michael Spannowsky, "Træning af neurale netværk med Universal Adiabatic Quantum Computing", arXiv: 2308.13028, (2023).

[5] Matteo Robbiati, Alejandro Sopena, Andrea Papaluca og Stefano Carrazza, "Real-time error mitigation for variational optimization on quantum hardware", arXiv: 2311.05680, (2023).

[6] Edoardo Pedicillo, Andrea Pasquale og Stefano Carrazza, "Benchmarking af maskinlæringsmodeller til kvantetilstandsklassificering", arXiv: 2309.07679, (2023).

Ovenstående citater er fra SAO/NASA ADS (sidst opdateret 2024-02-16 14:18:42). Listen kan være ufuldstændig, da ikke alle udgivere leverer passende og fuldstændige citatdata.

On Crossrefs citeret af tjeneste ingen data om at citere værker blev fundet (sidste forsøg 2024-02-16 14:18:40).

Tidsstempel:

Mere fra Quantum Journal