Bestemmelse af evnen til universel kvanteberegning: Test af kontrollerbarhed via dimensionel udtryksevne

Bestemmelse af evnen til universel kvanteberegning: Test af kontrollerbarhed via dimensionel udtryksevne

Fernando Gago-Encinas1, Tobias Hartung2,3, Daniel M. Reich1, Karl Jansen4, og Christiane P. Koch1

1Fachbereich Physik and Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Tyskland
2Northeastern University London, Devon House, St Katharine Docks, London, E1W 1LP, Storbritannien
3Khoury College of Computer Sciences, Northeastern University, 440 Huntington Avenue, 202 West Village H Boston, MA 02115, USA
4NIC, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Tyskland

Finder du denne artikel interessant eller vil du diskutere? Scite eller efterlade en kommentar på SciRate.

Abstrakt

Operatørstyrbarhed refererer til evnen til at implementere en vilkårlig enhed i SU(N) og er en forudsætning for universel kvanteberegning. Kontrollerbarhedstest kan bruges i designet af kvanteenheder for at reducere antallet af eksterne kontroller. Deres praktiske brug er imidlertid hæmmet af den eksponentielle skalering af deres numeriske indsats med antallet af qubits. Her udtænker vi en hybrid kvante-klassisk algoritme baseret på et parametriseret kvantekredsløb. Vi viser, at kontrollerbarhed er knyttet til antallet af uafhængige parametre, som kan opnås ved dimensionel ekspressivitetsanalyse. Vi eksemplificerer anvendelsen af ​​algoritmen til qubit-arrays med koblinger til nærmeste nabo og lokale kontroller. Vores arbejde giver en systematisk tilgang til ressourceeffektivt design af kvantechips.

Styrbarhed fortæller os, om vi kan implementere enhver tænkelig enhedsoperation på et kvantesystem med kontrolfelter, som vi kan ændre som en funktion af tiden. Denne egenskab er vigtig for qubit-arrays, da universel kvanteberegning kræver en enhed, der kan realisere enhver kvantelogisk operation. Da hvert kontrolfelt optager fysisk plads, kræver kalibrering og potentielt er en kilde til støj, bliver det vigtigt at finde enhedsdesign med så få kontroller og qubit-koblinger som muligt, efterhånden som kvanteenheder vokser sig større. Kontrollerbarhedstest kan hjælpe os med at nå dette mål.

Her præsenterer vi en hybrid kvante-klassisk test, der kombinerer målinger på en kvanteenhed og klassiske beregninger. Vores algoritme er baseret på konceptet parametriske kvantekredsløb, kvantemodstykket til booleske kredsløb, hvor nogle af de logiske porte afhænger af forskellige parametre. Vi udnytter dimensionel ekspressivitetsanalyse til at identificere alle parametre i kredsløbet, der er redundante og kan fjernes. Vi viser, at for ethvert qubit-array kan et parametrisk kvantekredsløb defineres således, at antallet af uafhængige parametre afspejler styrbarheden af ​​det originale kvantesystem.

Vi håber, at denne test vil give et nyttigt værktøj til at studere disse kredsløb og til at designe kontrollerbare kvanteenheder, der kan skaleres til større dimensioner.

► BibTeX-data

► Referencer

[1] Michael A Nielsen og Isaac L Chuang. "Kvanteberegning og kvanteinformation". Cambridge University Press. (2010).
https://​/​doi.org/​10.1017/​CBO9780511976667

[2] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D Oliver. “A quantum engineer’s guide to superconducting qubits”. Applied physics reviews 6 (2019).
https://​/​doi.org/​10.1063/​1.5089550

[3] Juan José García-Ripoll. “Quantum information and quantum optics with superconducting circuits”. Cambridge University Press. (2022).
https://​/​doi.org/​10.1017/​9781316779460

[4] Fernando Gago-Encinas, Monika Leibscher, and Christiane Koch. “Graph test of controllability in qubit arrays: A systematic way to determine the minimum number of external controls”. Quantum Science and Technology 8, 045002 (2023).
https:/​/​doi.org/​10.1088/​2058-9565/​ace1a4

[5] Domenico d’Alessandro. “Introduction to quantum control and dynamics”. CRC press. (2021).
https://​/​doi.org/​10.1201/​9781003051268

[6] Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J. Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm. “Quantum optimal control in quantum technologies. strategic report on current status, visions and goals for research in europe”. EPJ Quantum Technol. 9, 19 (2022).
https://​/​doi.org/​10.1140/​epjqt/​s40507-022-00138-x

[7] Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, Christiane P. Koch, Walter Köckenberger, Ronnie Kosloff, Ilya Kuprov, Burkard Luy, Sophie Schirmer, Thomas Schulte-Herbrüggen, D. Sugny, and Frank K. Wilhelm. “Training Schrödinger’s cat: quantum optimal control. strategic report on current status, visions and goals for research in europe”. EPJ D 69, 279 (2015).
https://​/​doi.org/​10.1140/​epjd/​e2015-60464-1

[8] Francesca Albertini and Domenico D’Alessandro. “The Lie algebra structure and controllability of spin systems”. Linear Algebra and its Applications 350, 213–235 (2002).
https:/​/​doi.org/​10.1016/​S0024-3795(02)00290-2

[9] U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalotti. “A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule”. Comm. Math. Phys. 311, 423–455 (2012).
https://​/​doi.org/​10.1007/​s00220-012-1441-z

[10] Ugo Boscain, Marco Caponigro, and Mario Sigalotti. “Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum”. Journal of Differential Equations 256, 3524–3551 (2014).
https://​/​doi.org/​10.1016/​j.jde.2014.02.004

[11] S. G. Schirmer, H. Fu, and A. I. Solomon. “Complete controllability of quantum systems”. Phys. Rev. A 63, 063410 (2001).
https://​/​doi.org/​10.1103/​PhysRevA.63.063410

[12] H Fu, S G Schirmer, and A I Solomon. “Complete controllability of finite-level quantum systems”. Journal of Physics A: Mathematical and General 34, 1679 (2001).
https:/​/​doi.org/​10.1088/​0305-4470/​34/​8/​313

[13] Claudio Altafini. “Controllability of quantum mechanical systems by root space decomposition of su(n)”. Journal of Mathematical Physics 43, 2051–2062 (2002).
https://​/​doi.org/​10.1063/​1.1467611

[14] Eugenio Pozzoli, Monika Leibscher, Mario Sigalotti, Ugo Boscain, and Christiane P. Koch. “Lie algebra for rotational subsystems of a driven asymmetric top”. J. Phys. A: Math. Theor. 55, 215301 (2022).
https://​/​doi.org/​10.1088/​1751-8121/​ac631d

[15] Thomas Chambrion, Paolo Mason, Mario Sigalotti, and Ugo Boscain. “Controllability of the discrete-spectrum Schrödinger equation driven by an external field”. Annales de l’Institut Henri Poincaré C 26, 329–349 (2009).
https://​/​doi.org/​10.1016/​j.anihpc.2008.05.001

[16] Nabile Boussaïd, Marco Caponigro, and Thomas Chambrion. “Weakly coupled systems in quantum control”. IEEE Trans. Automat. Control 58, 2205–2216 (2013).
https://​/​doi.org/​10.1109/​TAC.2013.2255948

[17] Monika Leibscher, Eugenio Pozzoli, Cristobal Pérez, Melanie Schnell, Mario Sigalotti, Ugo Boscain, and Christiane P. Koch. “Full quantum control of enantiomer-selective state transfer in chiral molecules despite degeneracy”. Communications Physics 5, 1–16 (2022).
https:/​/​doi.org/​10.1038/​s42005-022-00883-6

[18] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik og Jeremy L O'brien. "En variabel egenværdiopløser på en fotonisk kvanteprocessor". Naturkommunikation 5, 4213 (2014).
https://​/​doi.org/​10.1038/​ncomms5213

[19] Jarrod R McClean, Jonathan Romero, Ryan Babbush og Alán Aspuru-Guzik. "Teorien om variationelle hybride kvante-klassiske algoritmer". New Journal of Physics 18, 023023 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[20] John Preskill. "Quantum computing i nisq-æraen og derefter". Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[21] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, and Paolo Stornati. “Dimensional expressivity analysis of parametric quantum circuits”. Quantum 5, 422 (2021).
https:/​/​doi.org/​10.22331/​q-2021-03-29-422

[22] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Manuel Schneider, and Paolo Stornati. “Dimensional expressivity analysis, best-approximation errors, and automated design of parametric quantum circuits” (2021).

[23] Claudio Altafini. “Controllability of quantum mechanical systems by root space decomposition of su (n)”. Journal of Mathematical Physics 43, 2051–2062 (2002).
https://​/​doi.org/​10.1063/​1.1467611

[24] Francesca Albertini and Domenico D’Alessandro. “Notions of controllability for bilinear multilevel quantum systems”. IEEE Transactions on Automatic Control 48, 1399–1403 (2003).
https://​/​doi.org/​10.1109/​TAC.2003.815027

[25] SG Schirmer, ICH Pullen, and AI Solomon. “Identification of dynamical lie algebras for finite-level quantum control systems”. Journal of Physics A: Mathematical and General 35, 2327 (2002).
https:/​/​doi.org/​10.1088/​0305-4470/​35/​9/​319

[26] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. "Variationelle kvantealgoritmer". Nature Reviews Physics 3, 625-644 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[27] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms”. Advanced Quantum Technologies 2, 1900070 (2019).
https://​/​doi.org/​10.1002/​qute.201900070

[28] Lucas Friedrich and Jonas Maziero. “The quantum cost function concentration dependency on the parametrization expressivity” (2023).
https:/​/​doi.org/​10.1038/​s41598-023-37003-5

[29] John M Lee and John M Lee. “Smooth manifolds”. Springer. (2012).
https:/​/​doi.org/​10.1007/​978-1-4419-9982-5_1

[30] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-J Wang, Simon Gustavsson, and William D Oliver. “Superconducting qubits: Current state of play”. Annual Review of Condensed Matter Physics 11, 369–395 (2020).
https://​/​doi.org/​10.1146/​annurev-conmatphys-031119-050605

[31] Man-Duen Choi. "Fuldstændig positive lineære kort på komplekse matricer". Lineær algebra og dens anvendelser 10, 285-290 (1975).
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[32] Andrzej Jamiołkowski. "Lineære transformationer, der bevarer spor og positiv semidefiniteness af operatører". Reports on Mathematical Physics 3, 275-278 (1972).
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[33] Seth Lloyd, Masoud Mohseni og Patrick Rebentrost. "Quanteprincipal komponentanalyse". Nature Physics 10, 631-633 (2014).
https://doi.org/​10.1038/​nphys3029

[34] Min Jiang, Shunlong Luo, and Shuangshuang Fu. “Channel-state duality”. Physical Review A 87, 022310 (2013).
https://​/​doi.org/​10.1103/​PhysRevA.87.022310

[35] Alicia B Magann, Christian Arenz, Matthew D Grace, Tak-San Ho, Robert L Kosut, Jarrod R McClean, Herschel A Rabitz, and Mohan Sarovar. “From pulses to circuits and back again: A quantum optimal control perspective on variational quantum algorithms”. PRX Quantum 2, 010101 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.010101

[36] Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag Saha Roy, Daniel J. Egger, Stefan Filipp, Frank K. Wilhelm, and Shai Machnes. “Integrated tool set for control, calibration, and characterization of quantum devices applied to superconducting qubits”. Phys. Rev. Appl. 15, 034080 (2021).
https://​/​doi.org/​10.1103/​PhysRevApplied.15.034080

[37] Jonathan Z Lu, Rodrigo A Bravo, Kaiying Hou, Gebremedhin A Dagnew, Susanne F Yelin, and Khadijeh Najafi. “Learning quantum symmetries with interactive quantum-classical variational algorithms” (2023).

[38] Alicja Dutkiewicz, Thomas E O’Brien, and Thomas Schuster. “The advantage of quantum control in many-body hamiltonian learning” (2023).

[39] Rongxin Xia and Sabre Kais. “Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations”. Quantum Science and Technology 6, 015001 (2020).
https:/​/​doi.org/​10.1088/​2058-9565/​abbc74

[40] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow og Jay M Gambetta. "Hardwareeffektiv variationskvanteegenopløser til små molekyler og kvantemagneter". Nature 549, 242-246 (2017).
https://​/​doi.org/​10.1038/​nature23879

[41] Pauline J Ollitrault, Alexander Miessen, and Ivano Tavernelli. “Molecular quantum dynamics: A quantum computing perspective”. Accounts of Chemical Research 54, 4229–4238 (2021).
https://​/​doi.org/​10.1021/​acs.accounts.1c00514

Citeret af

Kunne ikke hente Crossref citeret af data under sidste forsøg 2023-12-21 12:25:23: Kunne ikke hente citerede data for 10.22331/q-2023-12-21-1214 fra Crossref. Dette er normalt, hvis DOI blev registreret for nylig. På SAO/NASA ADS ingen data om at citere værker blev fundet (sidste forsøg 2023-12-21 12:25:23).

Tidsstempel:

Mere fra Quantum Journal