Struktuuriteoreem üldistatud-mittekontekstuaalsete ontoloogiliste mudelite jaoks

Struktuuriteoreem üldistatud-mittekontekstuaalsete ontoloogiliste mudelite jaoks

David Schmid1,2,3, John H. Selby1, Matthew F. Pusey4ja Robert W. Spekkens2

1Rahvusvaheline kvanttehnoloogiate teooria keskus, Gdański ülikool, 80-308 Gdańsk, Poola
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario Kanada N2L 2Y5
3Kvantarvutite instituut ning füüsika ja astronoomia osakond, Waterloo ülikool, Waterloo, Ontario N2L 3G1, Kanada
4Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

Kas see artikkel on huvitav või soovite arutada? Scite või jätke SciRate'i kommentaar.

Abstraktne

It is useful to have a criterion for when the predictions of an operational theory should be considered classically explainable. Here we take the criterion to be that the theory admits of a generalized-noncontextual ontological model. Existing works on generalized noncontextuality have focused on experimental scenarios having a simple structure: typically, prepare-measure scenarios. Here, we formally extend the framework of ontological models as well as the principle of generalized noncontextuality to arbitrary compositional scenarios. We leverage a process-theoretic framework to prove that, under some reasonable assumptions, every generalized-noncontextual ontological model of a tomographically local operational theory has a surprisingly rigid and simple mathematical structure — in short, it corresponds to a frame representation which is not overcomplete. One consequence of this theorem is that the largest number of ontic states possible in any such model is given by the dimension of the associated generalized probabilistic theory. This constraint is useful for generating noncontextuality no-go theorems as well as techniques for experimentally certifying contextuality. Along the way, we extend known results concerning the equivalence of different notions of classicality from prepare-measure scenarios to arbitrary compositional scenarios. Specifically, we prove a correspondence between the following three notions of classical explainability of an operational theory: (i) existence of a noncontextual ontological model for it, (ii) existence of a positive quasiprobability representation for the generalized probabilistic theory it defines, and (iii) existence of an ontological model for the generalized probabilistic theory it defines.

► BibTeX-i andmed

► Viited

[1] RW Spekkens, Phys. Rev. A 71, 052108 (2005).
https://​/​doi.org/​10.1103/​PhysRevA.71.052108

[2] R. W. Spekkens, Phys. Rev. Lett. 101, 020401 (2008).
https://​/​doi.org/​10.1103/​PhysRevLett.101.020401

[3] C. Ferrie and J. Emerson, J. Phys. A: Math. Theor. 41, 352001 (2008).
https:/​/​doi.org/​10.1088/​1751-8113/​41/​35/​352001

[4] D. Schmid, J. H. Selby, E. Wolfe, R. Kunjwal, and R. W. Spekkens, PRX Quantum 2, 010331 (2021a).
https://​/​doi.org/​10.1103/​PRXQuantum.2.010331

[5] F. Shahandeh, PRX Quantum 2, 010330 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.010330

[6] J. H. Selby, D. Schmid, E. Wolfe, A. B. Sainz, R. Kunjwal, and R. W. Spekkens, Phys. Rev. Lett. 130, 230201 (2023a).
https://​/​doi.org/​10.1103/​PhysRevLett.130.230201

[7] J. H. Selby, D. Schmid, E. Wolfe, A. B. Sainz, R. Kunjwal, and R. W. Spekkens, Phys. Rev. A 107, 062203 (2023b).
https://​/​doi.org/​10.1103/​PhysRevA.107.062203

[8] JS Bell, Physics 1, 195 (1964).
https://​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[9] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani ja S. Wehner, Rev. Mod. Phys. 86, 419 (2014).
https://​/​doi.org/​10.1103/​RevModPhys.86.419

[10] R. W. Spekkens, arXiv:1909.04628 [physics.hist-ph] (2019).
arXiv: 1909.04628

[11] M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and R. W. Spekkens, Nat. Commun. 7, 11780 (2016).
https://​/​doi.org/​10.1038/​ncomms11780

[12] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner, and G. J. Pryde, Phys. Rev. Lett. 102, 010401 (2009).
https://​/​doi.org/​10.1103/​PhysRevLett.102.010401

[13] A. Chailloux, I. Kerenidis, S. Kundu, and J. Sikora, New J. Phys. 18, 045003 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​4/​045003

[14] A. Ambainis, M. Banik, A. Chaturvedi, D. Kravchenko, and A. Rai, Quant. Inf. Process. 18, 111 (2019).
https:/​/​doi.org/​10.1007/​s11128-019-2228-3

[15] D. Saha, P. Horodecki, and M. Pawłowski, New J. Phys. 21, 093057 (2019).
https://​/​doi.org/​10.1088/​1367-2630/​ab4149

[16] D. Saha and A. Chaturvedi, Phys. Rev. A 100, 022108 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.100.022108

[17] D. Schmid and R. W. Spekkens, Phys. Rev. X 8, 011015 (2018).
https://​/​doi.org/​10.1103/​PhysRevX.8.011015

[18] M. Lostaglio and G. Senno, Quantum 4, 258 (2020).
https:/​/​doi.org/​10.22331/​q-2020-04-27-258

[19] D. Schmid, H. Du, J. H. Selby, and M. F. Pusey, arXiv:2101.06263 (2021b).
https://​/​doi.org/​10.1103/​PhysRevLett.129.120403
arXiv: 2101.06263

[20] P. Lillystone, J. J. Wallman, and J. Emerson, Phys. Rev. Lett. 122, 140405 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.140405

[21] M. S. Leifer and R. W. Spekkens, Phys. Rev. Lett. 95, 200405 (2005), arXiv:quant-ph/​0412178.
https://​/​doi.org/​10.1103/​PhysRevLett.95.200405
arXiv:quant-ph/0412178

[22] M. F. Pusey and M. S. Leifer, in Proceedings of the 12th International Workshop on Quantum Physics and Logic, Electron. Proc. Theor. Comput. Sci., Vol. 195 (2015) pp. 295–306.
https://​/​doi.org/​10.4204/​EPTCS.195.22

[23] M. F. Pusey, Phys. Rev. Lett. 113, 200401 (2014).
https://​/​doi.org/​10.1103/​PhysRevLett.113.200401

[24] R. Kunjwal, M. Lostaglio, and M. F. Pusey, Phys. Rev. A 100, 042116 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.100.042116

[25] B. Coecke and A. Kissinger, in Categories for the Working Philosopher, edited by E. Landry (Oxford University Press, 2017) pp. 286–328.
https://​/​doi.org/​10.1093/​oso/​9780198748991.003.0012

[26] B. Coecke and A. Kissinger, Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning (Cambridge University Press, 2017).
https://​/​doi.org/​10.1017/​9781316219317

[27] J. H. Selby, C. M. Scandolo, and B. Coecke, Quantum 5, 445 (2021).
https:/​/​doi.org/​10.22331/​q-2021-04-28-445

[28] S. Gogioso and C. M. Scandolo, in Proceedings of the 14th International Workshop on Quantum Physics and Logic, Electron. Proc. Theor. Comput. Sci., Vol. 266 (2018) pp. 367–385.
https://​/​doi.org/​10.4204/​EPTCS.266.23

[29] L. Hardy, arXiv:quant-ph/​0101012 (2001).
arXiv:quant-ph/0101012

[30] J. Barrett, Phys. Rev. A 75, 032304 (2007).
https://​/​doi.org/​10.1103/​PhysRevA.75.032304

[31] L. Hardy, arXiv:1104.2066 [quant-ph] (2011).
arXiv: 1104.2066

[32] G. Chiribella, GM D'Ariano ja P. Perinotti, Phys. Rev. A 81, 062348 (2010).
https://​/​doi.org/​10.1103/​PhysRevA.81.062348

[33] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Physical Review A 84, 012311 (2011).
https://​/​doi.org/​10.1103/​PhysRevA.84.012311

[34] G. Chiribella, G. M. DAriano, and P. Perinotti, in Quantum theory: informational foundations and foils (Springer, 2016) pp. 171–221.
https://​/​doi.org/​10.48550/​arXiv.1506.00398

[35] D. Schmid, J. H. Selby, and R. W. Spekkens, arXiv:2009.03297 (2020).
arXiv: 2009.03297

[36] A. Gheorghiu and C. Heunen, in Proceedings of the 16th International Workshop on Quantum Physics and Logic, Electron. Proc. Theor. Comput. Sci., Vol. 318 (2020) pp. 196–212.
https://​/​doi.org/​10.4204/​EPTCS.318.12

[37] J. van de Wetering, in Proceedings of the 14th International Workshop on Quantum Physics and Logic, Electron. Proc. Theor. Comput. Sci., Vol. 266 (2018) pp. 179–196.
https://​/​doi.org/​10.4204/​EPTCS.266.12

[38] C. Ferrie and J. Emerson, New J. Phys. 11, 063040 (2009).
https:/​/​doi.org/​10.1088/​1367-2630/​11/​6/​063040

[39] L. Hardy, Stud. Hist. Phil. Mod. Phys. 35, 267 (2004).
https://​/​doi.org/​10.1016/​j.shpsb.2003.12.001

[40] P.-A. Mellies, in International Workshop on Computer Science Logic (Springer, 2006) pp. 1–30.
https://​/​doi.org/​10.1007/​11874683_1

[41] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Physical review letters 101, 060401 (2008a).
https://​/​doi.org/​10.1103/​PhysRevLett.101.060401

[42] G. Chiribella, GM D'Ariano ja P. Perinotti, EPL (Europhysics Letters) 83, 30004 (2008b).
https:/​/​doi.org/​10.1209/​0295-5075/​83/​30004

[43] M. Wilson and G. Chiribella, in rm Proceedings 18th International Conference on Quantum Physics and Logic, rm Gdansk, Poland, and online, 7-11 June 2021, Electronic Proceedings in Theoretical Computer Science, Vol. 343, edited by C. Heunen and M. Backens (Open Publishing Association, 2021) pp. 265–300.
https://​/​doi.org/​10.4204/​EPTCS.343.12

[44] T. Fritz and P. Perrone, in Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIV), Electron. Notes Theor. Comput. Sci., Vol. 341 (2018) pp. 121 – 149.
https://​/​doi.org/​10.1016/​j.entcs.2018.11.007

[45] S. Mac Lane, Categories for the working mathematician, Vol. 5 (Springer Science & Business Media, 2013).

[46] G. Chiribella, in Proceedings of the 11th workshop on Quantum Physics and Logic, Electron. Notes Theor. Comput. Sci., Vol. 172 (2014) pp. 1 – 14.
https://​/​doi.org/​10.4204/​EPTCS.172.1

[47] MA Nielsen ja IL Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
https://​/​doi.org/​10.1017/​CBO9780511976667

[48] D. Schmid, K. Ried, and R. W. Spekkens, Phys. Rev. A 100, 022112 (2019).
https://​/​doi.org/​10.1103/​PhysRevA.100.022112

[49] M. Appleby, C. A. Fuchs, B. C. Stacey, and H. Zhu, Eur. Phys. J. D 71, 197 (2017).
https://​/​doi.org/​10.1140/​epjd/​e2017-80024-y

[50] RW Spekkens, Phys. Rev. A 75, 032110 (2007).
https://​/​doi.org/​10.1103/​PhysRevA.75.032110

[51] D. Gottesman, in 22nd International Colloquium on Group Theoretical Methods in Physics (1999) pp. 32–43, arXiv:quant-ph/​9807006.
arXiv:quant-ph/9807006

[52] L. Hardy and W. K. Wootters, Found. Phys. 42, 454 (2012).
https:/​/​doi.org/​10.1007/​s10701-011-9616-6

[53] N. Harrigan, T. Rudolph, and S. Aaronson, arXiv:0709.1149 (2007).
arXiv: 0709.1149

[54] R. W. Spekkens, Noncontextuality: how we should define it, why it is natural, and what to do about its failure (2017), PIRSA:17070035.
http://​/​pirsa.org/​17070035

[55] E. G. Beltrametti and S. Bugajski, J. Phys. A 28, 3329 (1995).
https:/​/​doi.org/​10.1088/​0305-4470/​28/​12/​007

[56] J. J. Wallman and S. D. Bartlett, Phys. Rev. A 85, 062121 (2012).
https://​/​doi.org/​10.1103/​PhysRevA.85.062121

[57] F. Riesz, in Annales scientifiques de l’École Normale Supérieure, Vol. 31 (1914) pp. 9–14.

[58] V. Gitton and M. P. Woods, Quantum 6, 732 (2022).
https:/​/​doi.org/​10.22331/​q-2022-06-07-732

[59] A. Karanjai, J. J. Wallman, and S. D. Bartlett, arXiv:1802.07744 (2018).
arXiv: 1802.07744

[60] R. W. Spekkens, in Quantum Theory: Informational Foundations and Foils, edited by G. Chiribella and R. W. Spekkens (Springer Netherlands, Dordrecht, 2016) pp. 83–135.
https:/​/​doi.org/​10.1007/​978-94-017-7303-4_4

[61] R. W. Spekkens, The paradigm of kinematics and dynamics must yield to causal structure, in Questioning the Foundations of Physics: Which of Our Fundamental Assumptions Are Wrong?, edited by A. Aguirre, B. Foster, and Z. Merali (Springer International Publishing, Cham, 2015) pp. 5–16.
https:/​/​doi.org/​10.1007/​978-3-319-13045-3_2

[62] N. Harrigan and R. W. Spekkens, Found. Phys. 40, 125 (2010).
https:/​/​doi.org/​10.1007/​s10701-009-9347-0

[63] R. W. Spekkens, Found. Phys. 44, 1125 (2014).
https://​/​doi.org/​10.1007/​s10701-014-9833-x

[64] M. F. Pusey, J. Barrett, and T. Rudolph, Nat. Phys. 8, 475 (2012).
https://​/​doi.org/​10.1038/​nphys2309

[65] K. Husimi, Proc. Physico-Mathematical Soc. Jpn. 3rd Series 22, 264 (1940).
https://​/​doi.org/​10.11429/​ppmsj1919.22.4_264

[66] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
https://​/​doi.org/​10.1103/​PhysRev.131.2766

[67] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
https://​/​doi.org/​10.1103/​PhysRevLett.10.277

[68] K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, Phys. Rev. A 70, 062101 (2004).
https://​/​doi.org/​10.1103/​PhysRevA.70.062101

[69] D. Gross, J. Math. Phys. 47, 122107 (2006).
https://​/​doi.org/​10.1063/​1.2393152

[70] A. Krishna, R. W. Spekkens, and E. Wolfe, New J, Phys. 19, 123031 (2017).
https://​/​doi.org/​10.1088/​1367-2630/​aa9168

[71] D. Schmid, R. W. Spekkens, and E. Wolfe, Phys. Rev. A 97, 062103 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.97.062103

[72] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Nature 510, 351 (2014).
https://​/​doi.org/​10.1038/​nature13460

[73] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W. Spekkens, PRX Quantum 2, 020302 (2021).
https://​/​doi.org/​10.1103/​PRXQuantum.2.020302

Viidatud

[1] Costantino Budroni, Adán Cabello, Otfried Gühne, Matthias Kleinmann, and Jan-Åke Larsson, “Kochen-Specker contextuality”, Kaasaegse füüsika ülevaated 94 4, 045007 (2022).

[2] Martin Plávala, "Üldised tõenäosusteooriad: sissejuhatus", Physics Reports 1033, 1 (2023).

[3] Thomas D. Galley, Flaminia Giacomini ja John H. Selby, "Keelateoreem gravitatsioonivälja olemusest väljaspool kvantteooriat". Quantum 6 779 (2022).

[4] John H. Selby, Carlo Maria Scandolo, and Bob Coecke, “Reconstructing quantum theory from diagrammatic postulates”, arXiv: 1802.00367, (2018).

[5] David Schmid, Haoxing Du, John H. Selby ja Matthew F. Pusey, "Stabilisaatori alamteooriate mittekontekstuaalsete mudelite unikaalsus", Physical Review Letters 129 12, 120403 (2022).

[6] Lorenzo Catani, Matthew Leifer, David Schmid ja Robert W. Spekkens, "Miks interferentsi nähtused ei hõlma kvantteooria olemust" Quantum 7 1119 (2023).

[7] Vinicius P. Rossi, David Schmid, John H. Selby ja Ana Belén Sainz, "Kontekstuaalsus koos kaduva sidususega ja maksimaalse robustsusega kuni defaasini", Füüsiline ülevaade A 108 3, 032213 (2023).

[8] John H. Selby, Elie Wolfe, David Schmid, Ana Belén Sainz, and Vinicius P. Rossi, “Linear Program for Testing Nonclassicality and an Open-Source Implementation”, Physical Review Letters 132 5, 050202 (2024).

[9] Kieran Flatt, Hanwool Lee, Carles Roch I. Carceller, Jonatan Bohr Brask, and Joonwoo Bae, “Contextual Advantages and Certification for Maximum-Confidence Discrimination”, PRX Quantum 3 3, 030337 (2022).

[10] Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid ja Robert W. Spekkens, "Häiringute fenomenoloogia aspektid, mis on tõeliselt mitteklassikalised", Füüsiline ülevaade A 108 2, 022207 (2023).

[11] Laurens Walleghem, Shashaank Khanna, and Rutvij Bhavsar, “Comment on a no-go theorem for $psi$-ontic models”, arXiv: 2402.13140, (2024).

[12] John H. Selby, David Schmid, Elie Wolfe, Ana Belén Sainz, Ravi Kunjwal, and Robert W. Spekkens, “Contextuality without Incompatibility”, Physical Review Letters 130 23, 230201 (2023).

[13] John H. Selby, David Schmid, Elie Wolfe, Ana Belén Sainz, Ravi Kunjwal ja Robert W. Spekkens, “Accessible fragments of generalised probabilistic theoryes, cone equivalence and applications to witnessing non-classicality” Füüsiline ülevaade A 107 6, 062203 (2023).

[14] Nikolaos Koukoulekidis and David Jennings, “Constraints on magic state protocols from the statistical mechanics of Wigner negativity”, npj Quantum Information 8, 42 (2022).

[15] Stefano Gogioso and Nicola Pinzani, “The Topology of Causality”, arXiv: 2303.07148, (2023).

[16] Rafael Wagner, Anita Camillini ja Ernesto F. Galvão, "Koherentsus ja kontekstuaalsus Mach-Zehnderi interferomeetris", Quantum 8 1240 (2024).

[17] Roberto D. Baldijão, Rafael Wagner, Cristhiano Duarte, Bárbara Amaral ja Marcelo Terra Cunha, „Emergence of Noncontextuality under Quantum Darwinism” PRX Quantum 2 3, 030351 (2021).

[18] John H. Selby, Carlo Maria Scandolo, and Bob Coecke, “Reconstructing quantum theory from diagrammatic postulates”, Quantum 5 445 (2021).

[19] Anubhav Chaturvedi, Máté Farkas, and Victoria J. Wright, “Characterising and bounding the set of quantum behaviours in contextuality scenarios”, Quantum 5 484 (2021).

[20] Jamie Sikora and John H. Selby, “Impossibility of coin flipping in generalized probabilistic theories via discretizations of semi-infinite programs”, Physical Review Research 2 4, 043128 (2020).

[21] David Schmid, John H. Selby ja Robert W. Spekkens, "Mõnede levinud vastuväidete käsitlemine üldistatud mittekontekstuaalsusele" Füüsiline ülevaade A 109 2, 022228 (2024).

[22] Rafael Wagner, Rui Soares Barbosa ja Ernesto F. Galvão, "Ebavõrdsus, mis tunnistab sidusust, mittelokaalsust ja kontekstuaalsust", arXiv: 2209.02670, (2022).

[23] Martin Plávala and Otfried Gühne, “Contextuality as a Precondition for Quantum Entanglement”, Physical Review Letters 132 10, 100201 (2024).

[24] Giacomo Mauro D'Ariano, Marco Erba ja Paolo Perinotti, "Klassikalisus ilma kohaliku diskrimineerimiseta: takerdumise ja komplementaarsuse lahtisidumine", Füüsiline ülevaade A 102 5, 052216 (2020).

[25] Rafael Wagner, Roberto D. Baldijão, Alisson Tezzin ja Bárbara Amaral, "Ressursiteoreetilise vaatenurga kasutamine kvant-üldistatud kontekstuaalsuse tunnistamiseks ja kujundamiseks ettevalmistamise ja mõõtmise stsenaariumide jaoks", Journal of Physics A Mathematical General 56 50, 505303 (2023).

[26] David Schmid, “A review and reformulation of macroscopic realism: resolving its deficiencies using the framework of generalized probabilistic theories”, Quantum 8 1217 (2024).

[27] Giulio Chiribella, Lorenzo Giannelli, and Carlo Maria Scandolo, “Bell nonlocality in classical systems”, arXiv: 2301.10885, (2023).

[28] Robert Raussendorf, Cihan Okay, Michael Zurel ja Polina Feldmann, "Kohomoloogia roll maagiliste olekutega kvantarvutuses" arXiv: 2110.11631, (2021).

[29] Marco Erba, Paolo Perinotti, Davide Rolino ja Alessandro Tosini, "Mõõtmiste kokkusobimatus on rangelt tugevam kui häire", Füüsiline ülevaade A 109 2, 022239 (2024).

[30] Victor Gitton and Mischa P. Woods, “Solvable Criterion for the Contextuality of any Prepare-and-Measure Scenario”, arXiv: 2003.06426, (2020).

[31] Martin Plávala, "Kohtumatus piiratud operatsioonide teooriates: kontekstuaalsuse ja juhtimise ühendamine", Journal of Physics A Mathematical General 55 17, 174001 (2022).

[32] Sidiney B. Montanhano, “Differential Geometry of Contextuality”, arXiv: 2202.08719, (2022).

[33] Victor Gitton and Mischa P. Woods, “Solvable Criterion for the Contextuality of any Prepare-and-Measure Scenario”, Quantum 6 732 (2022).

[34] John H. Selby, Ana Belén Sainz, Victor Magron, Łukasz Czekaj, and Michał Horodecki, “Correlations constrained by composite measurements”, Quantum 7 1080 (2023).

[35] Paulo J. Cavalcanti, John H. Selby, Jamie Sikora ja Ana Belén Sainz, "Kõigi mitmeosaliste mittesignaali andvate kanalite lagunemine kohalike kanalite kvaasitõenäoliste segude kaudu üldistatud tõenäosusteooriates", Journal of Physics A Mathematical General 55 40, 404001 (2022).

[36] Leevi Leppäjärvi, “Mõõtmiste simuleeritavus ja mitteühilduvus kvantteoorias ja muudes operatsiooniteooriates”, arXiv: 2106.03588, (2021).

[37] Lorenzo Catani, "Wigneri funktsioonide kovariatsiooni ja transformatsiooni mittekontekstuaalsuse vaheline seos", arXiv: 2004.06318, (2020).

[38] Russell P Rundle and Mark J Everitt, “Overview of the phase space formulation of quantum mechanics with application to quantum technologies”, arXiv: 2102.11095, (2021).

[39] Robert Raussendorf, Cihan Okay, Michael Zurel ja Polina Feldmann, "Kohomoloogia roll maagiliste olekutega kvantarvutuses" Quantum 7 979 (2023).

Ülaltoodud tsitaadid on pärit SAO/NASA KUULUTUSED (viimati edukalt värskendatud 2024-03-17 01:02:22). Loend võib olla puudulik, kuna mitte kõik väljaandjad ei esita sobivaid ja täielikke viiteandmeid.

On Crossrefi viidatud teenus teoste viitamise andmeid ei leitud (viimane katse 2024-03-17 01:02:20).

Ajatempel:

Veel alates Quantum Journal