Szigorú korlátozások a kvantumállapotok valószínűségi konvertálhatóságára vonatkozóan. PlatoBlockchain Data Intelligence. Függőleges keresés. Ai.

Szigorú korlátok a kvantumállapotok valószínűségi konvertálhatóságára vonatkozóan

Bartosz Regula

Fizikai Tanszék, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokió 113-0033, Japán

Érdekesnek találja ezt a cikket, vagy szeretne megvitatni? Scite vagy hagyjon megjegyzést a SciRate-en.

Absztrakt

Két általános megközelítést dolgozunk ki a kvantumállapotok manipulációjának valószínűségi protokollok segítségével történő jellemzésére, amelyeket bizonyos kvantumerőforrás-elmélet korlátai korlátoznak.

Először egy általános szükséges feltételt adunk meg a kvantumállapotok közötti fizikai transzformáció meglétéhez, amelyet egy nemrégiben bevezetett erőforrás-monoton segítségével kapunk a Hilbert projektív metrika alapján. Valamennyi affin kvantumerőforrás elméletben (pl. koherencia, aszimmetria, imaginárius), valamint az összefonódásos desztillációban megmutatjuk, hogy a monoton szükséges és elégséges feltétele az erőforrás-nem generáló műveletek során az egyszeri erőforrás konvertálhatóságnak, ennélfogva nem jobb. minden valószínűségi protokollra korlátozások lehetségesek. A monotont arra használjuk, hogy javított korlátokat állítsunk fel mind az egyszeri, mind a sok példányos valószínűségi erőforrás-desztillációs protokollok teljesítményében.

Ezt a megközelítést kiegészítve bevezetünk egy általános módszert az erőforrás-transzformációk elérhető valószínűségeinek behatárolására erőforrást nem generáló térképek alapján, konvex optimalizálási problémák családján keresztül. Megmutatjuk, hogy szorosan jellemzi az egylövéses valószínűségi desztillációt az erőforrás-elméletek széles típusaiban, lehetővé téve a valószínűségek és a hibák közötti kompromisszumok pontos elemzését a maximálisan erőforrás-igényes állapotok desztillációjában. Bemutatjuk mindkét megközelítésünk hasznosságát a kvantum-összefonódásos desztilláció tanulmányozásában.

► BibTeX adatok

► Referenciák

[1] P. M. Alberti and A. Uhlmann, “A problem relating to positive linear maps on matrix algebras,” Rep. Math. Phys. 18, 163 (1980).
https:/​/​doi.org/​10.1016/​0034-4877(80)90083-X

[2] M. A. Nielsen, “Conditions for a Class of Entanglement Transformations,” Phys. Rev. Lett. 83, 436 (1999).
https://​/​doi.org/​10.1103/​PhysRevLett.83.436

[3] G. Vidal, “Entanglement of Pure States for a Single Copy,” Phys. Rev. Lett. 83, 1046 (1999).
https://​/​doi.org/​10.1103/​PhysRevLett.83.1046

[4] A. Chefles, R. Jozsa, and A. Winter, “On the existence of physical transformations between sets of quantum states,” Int. J. Quantum Inform. 02, 11 (2004).
https://​/​doi.org/​10.1142/​S0219749904000031

[5] F. Buscemi, “Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency,” Commun. Math. Phys. 310, 625 (2012).
https:/​/​doi.org/​10.1007/​s00220-012-1421-3

[6] D. Reeb, M. J. Kastoryano, and M. M. Wolf, “Hilbert’s projective metric in quantum information theory,” J. Math. Phys. 52, 082201 (2011).
https://​/​doi.org/​10.1063/​1.3615729

[7] T. Heinosaari, M. A. Jivulescu, D. Reeb, and M. M. Wolf, “Extending quantum operations,” J. Math. Phys. 53, 102208 (2012).
https://​/​doi.org/​10.1063/​1.4755845

[8] M. Horodecki and J. Oppenheim, “Fundamental limitations for quantum and nanoscale thermodynamics,” Nat. Commun. 4, 2059 (2013a).
https://​/​doi.org/​10.1038/​ncomms3059

[9] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Yunger Halpern, “The resource theory of informational nonequilibrium in thermodynamics,” Phys. Rep. 583, 1 (2015).
https://​/​doi.org/​10.1016/​j.physrep.2015.04.003

[10] A. M. Alhambra, J. Oppenheim, and C. Perry, “Fluctuating States: What is the Probability of a Thermodynamical Transition?” Phys. Rev. X 6, 041016 (2016).
https://​/​doi.org/​10.1103/​PhysRevX.6.041016

[11] F. Buscemi and G. Gour, “Quantum relative Lorenz curves,” Phys. Rev. A 95, 012110 (2017).
https://​/​doi.org/​10.1103/​PhysRevA.95.012110

[12] G. Gour, “Quantum resource theories in the single-shot regime,” Phys. Rev. A 95, 062314 (2017).
https://​/​doi.org/​10.1103/​PhysRevA.95.062314

[13] G. Gour, D. Jennings, F. Buscemi, R. Duan, and I. Marvian, “Quantum majorization and a complete set of entropic conditions for quantum thermodynamics,” Nat. Commun. 9, 5352 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-06261-7

[14] R. Takagi and B. Regula, “General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks,” Phys. Rev. X 9, 031053 (2019).
https://​/​doi.org/​10.1103/​PhysRevX.9.031053

[15] Z.-W. Liu, K. Bu, and R. Takagi, “One-Shot Operational Quantum Resource Theory,” Phys. Rev. Lett. 123, 020401 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.123.020401

[16] F. Buscemi, D. Sutter, and M. Tomamichel, “An information-theoretic treatment of quantum dichotomies,” Quantum 3, 209 (2019).
https:/​/​doi.org/​10.22331/​q-2019-12-09-209

[17] M. Dall’Arno, F. Buscemi, and V. Scarani, “Extension of the Alberti-Ulhmann criterion beyond qubit dichotomies,” Quantum 4, 233 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-20-233

[18] B. Regula, K. Bu, R. Takagi, and Z.-W. Liu, “Benchmarking one-shot distillation in general quantum resource theories,” Phys. Rev. A 101, 062315 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.101.062315

[19] W. Zhou and F. Buscemi, “General state transitions with exact resource morphisms: A unified resource-theoretic approach,” J. Phys. A: Math. Theor. 53, 445303 (2020).
https://​/​doi.org/​10.1088/​1751-8121/​abafe5

[20] M. Horodecki and J. Oppenheim, “(Quantumness in the context of) Resource theories,” Int. J. Mod. Phys. B 27, 1345019 (2013b).
https://​/​doi.org/​10.1142/​S0217979213450197

[21] E. Chitambar és G. Gour, „Quantum resource theories”, Rev. Mod. Phys. 91, 025001 (2019).
https://​/​doi.org/​10.1103/​RevModPhys.91.025001

[22] FGSL Brandão és G. Gour, „Reversible framework for quantum resource theories”, Phys. Rev. Lett. 115, 070503 (2015).
https://​/​doi.org/​10.1103/​PhysRevLett.115.070503

[23] K. Fang and Z.-W. Liu, “No-Go Theorems for Quantum Resource Purification,” Phys. Rev. Lett. 125, 060405 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.060405

[24] T. Gonda és RW Spekkens, „Monotones in General Resource Theories”, arXiv:1912.07085 (2019).
arXiv: 1912.07085

[25] C.-Y. Hsieh, “Resource Preservability,” Quantum 4, 244 (2020).
https:/​/​doi.org/​10.22331/​q-2020-03-19-244

[26] K. Kuroiwa and H. Yamasaki, “General Quantum Resource Theories: Distillation, Formation and Consistent Resource Measures,” Quantum 4, 355 (2020).
https:/​/​doi.org/​10.22331/​q-2020-11-01-355

[27] G. Ferrari, L. Lami, T. Theurer, and M. B. Plenio, “Asymptotic state transformations of continuous variable resources,” arXiv:2010.00044 (2020).
arXiv: 2010.00044

[28] B. Regula and R. Takagi, “Fundamental limitations on distillation of quantum channel resources,” Nat. Commun. 12, 4411 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-24699-0

[29] K. Fang and Z.-W. Liu, “No-Go Theorems for Quantum Resource Purification: New Approach and Channel Theory,” PRX Quantum 3, 010337 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.010337

[30] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824 (1996a).
https://​/​doi.org/​10.1103/​PhysRevA.54.3824

[31] R. Horodecki, P. Horodecki, M. Horodecki és K. Horodecki, „Quantum entanglement”, Rev. Mod. Phys. 81, 865 (2009).
https://​/​doi.org/​10.1103/​RevModPhys.81.865

[32] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal Clifford gates and noisy ancillas,” Phys. Rev. A 71, 022316 (2005).
https://​/​doi.org/​10.1103/​PhysRevA.71.022316

[33] E. T. Campbell, B. M. Terhal, and C. Vuillot, “Roads towards fault-tolerant universal quantum computation,” Nature 549, 172 (2017).
https://​/​doi.org/​10.1038/​nature23460

[34] H.-K. Lo and S. Popescu, “Concentrating entanglement by local actions: Beyond mean values,” Phys. Rev. A 63, 022301 (2001).
https://​/​doi.org/​10.1103/​PhysRevA.63.022301

[35] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
https://​/​doi.org/​10.1103/​PhysRevA.62.062314

[36] M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Phys. Rev. A 60, 1888 (1999a).
https://​/​doi.org/​10.1103/​PhysRevA.60.1888

[37] F. Rozpędek, T. Schiet, L. P. Thinh, D. Elkouss, A. C. Doherty, and S. Wehner, “Optimizing practical entanglement distillation,” Phys. Rev. A 97, 062333 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.97.062333

[38] K. Fang, X. Wang, L. Lami, B. Regula, and G. Adesso, “Probabilistic Distillation of Quantum Coherence,” Phys. Rev. Lett. 121, 070404 (2018).
https://​/​doi.org/​10.1103/​PhysRevLett.121.070404

[39] J. I. de Vicente, C. Spee, and B. Kraus, “Maximally Entangled Set of Multipartite Quantum States,” Phys. Rev. Lett. 111, 110502 (2013).
https://​/​doi.org/​10.1103/​PhysRevLett.111.110502

[40] G. Gour, B. Kraus, and N. R. Wallach, “Almost all multipartite qubit quantum states have trivial stabilizer,” J. Math. Phys. 58, 092204 (2017).
https://​/​doi.org/​10.1063/​1.5003015

[41] D. Sauerwein, N. R. Wallach, G. Gour, and B. Kraus, “Transformations among Pure Multipartite Entangled States via Local Operations are Almost Never Possible,” Phys. Rev. X 8, 031020 (2018).
https://​/​doi.org/​10.1103/​PhysRevX.8.031020

[42] P. J. Bushell, “Hilbert’s metric and positive contraction mappings in a Banach space,” Arch. Rat. Mech. Anal. 52, 330 (1973).
https://​/​doi.org/​10.1007/​BF00247467

[43] B. Regula, “Probabilistic Transformations of Quantum Resources,” Phys. Rev. Lett. 128, 110505 (2022).
https://​/​doi.org/​10.1103/​PhysRevLett.128.110505

[44] I. Devetak, A. W. Harrow, and A. J. Winter, “A Resource Framework for Quantum Shannon Theory,” IEEE Trans. Inf. Theory 54, 4587 (2008).
https://​/​doi.org/​10.1109/​TIT.2008.928980

[45] B. Coecke, T. Fritz és RW Spekkens, „Az erőforrások matematikai elmélete”, Inf. Comput. 250, 59 (2016).
https://​/​doi.org/​10.1016/​j.ic.2016.02.008

[46] L. del Rio, L. Kraemer, and R. Renner, “Resource theories of knowledge,” arXiv:1511.08818 (2015).
arXiv: 1511.08818

[47] Y. Liu and X. Yuan, “Operational resource theory of quantum channels,” Phys. Rev. Research 2, 012035 (2020).
https://​/​doi.org/​10.1103/​PhysRevResearch.2.012035

[48] G. Gour and A. Winter, “How to Quantify a Dynamical Quantum Resource,” Phys. Rev. Lett. 123, 150401 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.123.150401

[49] T. Eggeling, K. G. H. Vollbrecht, R. F. Werner, and M. M. Wolf, “Distillability via Protocols Respecting the Positivity of Partial Transpose,” Phys. Rev. Lett. 87, 257902 (2001).
https://​/​doi.org/​10.1103/​PhysRevLett.87.257902

[50] K. Audenaert, M. B. Plenio, and J. Eisert, “Entanglement Cost under Positive-Partial-Transpose-Preserving Operations,” Phys. Rev. Lett. 90, 027901 (2003).
https://​/​doi.org/​10.1103/​PhysRevLett.90.027901

[51] S. Ishizaka, “Bound Entanglement Provides Convertibility of Pure Entangled States,” Phys. Rev. Lett. 93, 190501 (2004).
https://​/​doi.org/​10.1103/​PhysRevLett.93.190501

[52] F. G. S. L. Brandão and M. B. Plenio, “A Reversible Theory of Entanglement and its Relation to the Second Law,” Commun. Math. Phys. 295, 829 (2010).
https:/​/​doi.org/​10.1007/​s00220-010-1003-1

[53] M. Berta, F. G. S. L. Brandão, G. Gour, L. Lami, M. B. Plenio, B. Regula, and M. Tomamichel, “On a gap in the proof of the generalised quantum Stein’s lemma and its consequences for the reversibility of quantum resources,” arXiv:2205.02813 (2022).
arXiv: 2205.02813

[54] P. Faist, J. Oppenheim, and R. Renner, “Gibbs-preserving maps outperform thermal operations in the quantum regime,” New J. Phys. 17, 043003 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​4/​043003

[55] E. Chitambar és G. Gour, „Inkoherens műveletek kritikai vizsgálata és a kvantumkoherencia fizikailag konzisztens erőforráselmélete”, Phys. Rev. Lett. 117, 030401 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.117.030401

[56] L. Lami, B. Regula, and G. Adesso, “Generic Bound Coherence under Strictly Incoherent Operations,” Phys. Rev. Lett. 122, 150402 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.150402

[57] L. Lami, “Completing the Grand Tour of Asymptotic Quantum Coherence Manipulation,” IEEE Trans. Inf. Theory 66, 2165 (2020).
https://​/​doi.org/​10.1109/​TIT.2019.2945798

[58] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente, “Resource Theory of Entanglement with a Unique Multipartite Maximally Entangled State,” Phys. Rev. Lett. 122, 120503 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.120503

[59] L. Lami and B. Regula, “No second law of entanglement manipulation after all,” arXiv:2111.02438 (2021).
arXiv: 2111.02438

[60] P. Faist and R. Renner, “Fundamental Work Cost of Quantum Processes,” Phys. Rev. X 8, 021011 (2018).
https://​/​doi.org/​10.1103/​PhysRevX.8.021011

[61] E. B. Davies and J. T. Lewis, “An operational approach to quantum probability,” Commun. Math. Phys. 17, 239 (1970).
https://​/​doi.org/​10.1007/​BF01647093

[62] M. Ozawa, “Quantum measuring processes of continuous observables,” J. Math. Phys. 25, 79 (1984).
https://​/​doi.org/​10.1063/​1.526000

[63] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying Entanglement,” Phys. Rev. Lett. 78, 2275 (1997).
https://​/​doi.org/​10.1103/​PhysRevLett.78.2275

[64] V. Vedral and M. B. Plenio, “Entanglement Measures and Purification Procedures,” Phys. Rev. A 57, 1619 (1998).
https://​/​doi.org/​10.1103/​PhysRevA.57.1619

[65] G. Vidal, “Entanglement monotones,” J. Mod. Opt. 47, 355 (2000).
https://​/​doi.org/​10.1080/​09500340008244048

[66] G. Vidal and R. Tarrach, “Robustness of entanglement,” Phys. Rev. A 59, 141 (1999).
https://​/​doi.org/​10.1103/​PhysRevA.59.141

[67] N. Datta, “Min- and Max-Relative Entropies and a New Entanglement Monotone,” IEEE Trans. Inf. Theory 55, 2816 (2009).
https://​/​doi.org/​10.1109/​TIT.2009.2018325

[68] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso, “Operational Advantage of Quantum Resources in Subchannel Discrimination,” Phys. Rev. Lett. 122, 140402 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.140402

[69] M. Lewenstein and A. Sanpera, “Separability and Entanglement of Composite Quantum Systems,” Phys. Rev. Lett. 80, 2261 (1998).
https://​/​doi.org/​10.1103/​PhysRevLett.80.2261

[70] R. Uola, T. Bullock, T. Kraft, J.-P. Pellonpää, and N. Brunner, “All Quantum Resources Provide an Advantage in Exclusion Tasks,” Phys. Rev. Lett. 125, 110402 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.110402

[71] A. F. Ducuara and P. Skrzypczyk, “Operational Interpretation of Weight-Based Resource Quantifiers in Convex Quantum Resource Theories,” Phys. Rev. Lett. 125, 110401 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.110401

[72] E. Kohlberg and J. W. Pratt, “The Contraction Mapping Approach to the Perron-Frobenius Theory: Why Hilbert’s Metric?” Math. Oper. Res. 7, 198 (1982).
https://​/​www.jstor.org/​stable/​3689541

[73] R. G. Douglas, “On Majorization, Factorization, and Range Inclusion of Operators on Hilbert Space,” Proc. Amer. Math. Soc. 17, 413 (1966).
https://​/​doi.org/​10.2307/​2035178

[74] J. P. Ponstein, “Approaches to the Theory of Optimization” (Cambridge University Press, 2004).

[75] R. T. Rockafellar, “Convex Analysis” (Princeton University Press, Princeton, 1970).

[76] E. Haapasalo, M. Sedlák, and M. Ziman, “Distance to boundary and minimum-error discrimination,” Phys. Rev. A 89, 062303 (2014).
https://​/​doi.org/​10.1103/​PhysRevA.89.062303

[77] A. Kent, “Entangled Mixed States and Local Purification,” Phys. Rev. Lett. 81, 2839 (1998).
https://​/​doi.org/​10.1103/​PhysRevLett.81.2839

[78] E. Jane, “Purification of two-qubit mixed states,” Quant. Inf. Comput. 2, 348 (2002), arXiv:quant-ph/​0205107.
arXiv:quant-ph/0205107

[79] P. Horodecki and M. Demianowicz, “Fidelity thresholds in single copy entanglement distillation,” Phys. Lett. A 354, 40 (2006).
https://​/​doi.org/​10.1016/​j.physleta.2006.01.024

[80] B. Regula, K. Fang, X. Wang, and M. Gu, “One-shot entanglement distillation beyond local operations and classical communication,” New J. Phys. 21, 103017 (2019).
https://​/​doi.org/​10.1088/​1367-2630/​ab4732

[81] K.-D. Wu, T. Theurer, G.-Y. Xiang, C.-F. Li, G.-C. Guo, M. B. Plenio, and A. Streltsov, “Quantum coherence and state conversion: Theory and experiment,” npj Quantum Inf 6, 1 (2020).
https://​/​doi.org/​10.1038/​s41534-020-0250-z

[82] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying Coherence,” Phys. Rev. Lett. 113, 140401 (2014).
https://​/​doi.org/​10.1103/​PhysRevLett.113.140401

[83] G. Gour and R. W. Spekkens, “The resource theory of quantum reference frames: Manipulations and monotones,” New J. Phys. 10, 033023 (2008).
https:/​/​doi.org/​10.1088/​1367-2630/​10/​3/​033023

[84] A. Hickey and G. Gour, “Quantifying the imaginarity of quantum mechanics,” J. Phys. A: Math. Theor. 51, 414009 (2018).
https://​/​doi.org/​10.1088/​1751-8121/​aabe9c

[85] K.-D. Wu, T. V. Kondra, S. Rana, C. M. Scandolo, G.-Y. Xiang, C.-F. Li, G.-C. Guo, and A. Streltsov, “Operational Resource Theory of Imaginarity,” Phys. Rev. Lett. 126, 090401 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.126.090401

[86] V. Veitch, S. A. H. Mousavian, D. Gottesman, and J. Emerson, “The resource theory of stabilizer quantum computation,” New J. Phys. 16, 013009 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​1/​013009

[87] M. Howard and E. Campbell, “Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing,” Phys. Rev. Lett. 118, 090501 (2017).
https://​/​doi.org/​10.1103/​PhysRevLett.118.090501

[88] M.-D. Choi, “Completely positive linear maps on complex matrices,” Lin. Alg. Appl. 10, 285 (1975).
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[89] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046 (1996b).
https://​/​doi.org/​10.1103/​PhysRevA.53.2046

[90] S. Ishizaka and M. B. Plenio, “Multiparticle entanglement manipulation under positive partial transpose preserving operations,” Phys. Rev. A 71, 052303 (2005).
https://​/​doi.org/​10.1103/​PhysRevA.71.052303

[91] N. Linden, S. Massar, and S. Popescu, “Purifying Noisy Entanglement Requires Collective Measurements,” Phys. Rev. Lett. 81, 3279 (1998).
https://​/​doi.org/​10.1103/​PhysRevLett.81.3279

[92] G. Vidal, D. Jonathan, and M. A. Nielsen, “Approximate transformations and robust manipulation of bipartite pure-state entanglement,” Phys. Rev. A 62, 012304 (2000).
https://​/​doi.org/​10.1103/​PhysRevA.62.012304

[93] A. Shimony, “Degree of Entanglement,” Ann. NY Ac. 755, 675 (1995).
https://​/​doi.org/​10.1111/​j.1749-6632.1995.tb39008.x

[94] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard, “Simulation of quantum circuits by low-rank stabilizer decompositions,” Quantum 3, 181 (2019).
https:/​/​doi.org/​10.22331/​q-2019-09-02-181

[95] N. Johnston, C.-K. Li, S. Plosker, Y.-T. Poon, and B. Regula, “Evaluating the robustness of $k$-coherence and $k$-entanglement,” Phys. Rev. A 98, 022328 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.98.022328

[96] B. Regula, “Convex geometry of quantum resource quantification,” J. Phys. A: Math. Theor. 51, 045303 (2018).
https://​/​doi.org/​10.1088/​1751-8121/​aa9100

[97] R. Takagi, B. Regula, and M. M. Wilde, “One-Shot Yield-Cost Relations in General Quantum Resource Theories,” PRX Quantum 3, 010348 (2022).
https://​/​doi.org/​10.1103/​PRXQuantum.3.010348

[98] L. Zhang, T. Gao, and F. Yan, “Transformations of multilevel coherent states under coherence-preserving operations,” Sci. China Phys. Mech. Astron. 64, 260312 (2021).
https://​/​doi.org/​10.1007/​s11433-021-1696-y

[99] F. Buscemi and N. Datta, “The Quantum Capacity of Channels With Arbitrarily Correlated Noise,” IEEE Trans. Inf. Theory 56, 1447 (2010).
https://​/​doi.org/​10.1109/​TIT.2009.2039166

[100] L. Wang and R. Renner, “One-Shot Classical-Quantum Capacity and Hypothesis Testing,” Phys. Rev. Lett. 108, 200501 (2012).
https://​/​doi.org/​10.1103/​PhysRevLett.108.200501

[101] P. Horodecki, M. Horodecki, and R. Horodecki, “Bound Entanglement Can Be Activated,” Phys. Rev. Lett. 82, 1056 (1999b).
https://​/​doi.org/​10.1103/​PhysRevLett.82.1056

[102] G. Ludwig, “An Axiomatic Basis for Quantum Mechanics: Volume 1 Derivation of Hilbert Space Structure” (Springer-Verlag, Berlin Heidelberg, 1985).

[103] A. Hartkämper and H. Neumann, eds., “Foundations of Quantum Mechanics and Ordered Linear Spaces” (Springer, 1974).

[104] L. Lami, “Non-Classical Correlations in Quantum Mechanics and Beyond”, Ph.D. thesis, Universitat Autònoma de Barcelona (2017), arXiv:1803.02902.
arXiv: 1803.02902

[105] L. Lami, B. Regula, R. Takagi, and G. Ferrari, “Framework for resource quantification in infinite-dimensional general probabilistic theories,” Phys. Rev. A 103, 032424 (2021).
https://​/​doi.org/​10.1103/​PhysRevA.103.032424

[106] B. M. Terhal and P. Horodecki, “Schmidt number for density matrices,” Phys. Rev. A 61, 040301 (2000).
https://​/​doi.org/​10.1103/​PhysRevA.61.040301

[107] D. Jonathan és MB Plenio, „Entanglement-Assisted Local Manipulation of Pure Quantum States”, Phys. Rev. Lett. 83, 3566 (1999).
https://​/​doi.org/​10.1103/​PhysRevLett.83.3566

[108] S. Bandyopadhyay, R. Jain, J. Oppenheim, and C. Perry, “Conclusive exclusion of quantum states,” Phys. Rev. A 89, 022336 (2014).
https://​/​doi.org/​10.1103/​PhysRevA.89.022336

Idézi

[1] Mingfei Ye, Yu Luo, Zhihui Li, and Yongming Li, “Projective robustness for quantum channels and measurements and their operational significance”, Laser Physics Letters 19 7, 075204 (2022).

[2] Bartosz Regula, “Probabilistic Transformations of Quantum Resources”, Physical Review Letters 128 11, 110505 (2022).

[3] Rafael Wagner, Rui Soares Barbosa és Ernesto F. Galvão, „Egyenlőtlenségek a koherenciáról, a nem lokalitásról és a kontextualitásról” arXiv: 2209.02670.

[4] Bartosz Regula, Ludovico Lami és Mark M. Wilde, „Overcoming entropic limitations on asymptotic state transformations through probabilistic protocols”. arXiv: 2209.03362.

A fenti idézetek innen származnak SAO/NASA HIRDETÉSEK (utolsó sikeres frissítés: 2022-09-22 16:22:17). Előfordulhat, hogy a lista hiányos, mivel nem minden kiadó ad megfelelő és teljes hivatkozási adatokat.

Nem sikerült lekérni Az adatok által hivatkozott kereszthivatkozás utolsó próbálkozáskor 2022-09-22 16:22:15: Nem sikerült lekérni a 10.22331/q-2022-09-22-817 hivatkozás által hivatkozott adatokat a Crossref-től. Ez normális, ha a DOI-t nemrég regisztrálták.

Időbélyeg:

Még több Quantum Journal