Rețele adverse generative cuantice bazate pe stil pentru evenimentele Monte Carlo PlatoBlockchain Data Intelligence. Căutare verticală. Ai.

Rețele adverse generative cuantice bazate pe stil pentru evenimentele Monte Carlo

Carlos Bravo-Prieto1,2, Julien Baglio3, Marco Cè3, Anthony Francis3,4, Dorota M. Grabowska3, și Stefano Carrazza1,3,5

1Centrul de Cercetare Quantum, Institutul de Inovare Tehnologică, Abu Dhabi, Emiratele Arabe Unite
2Departament de Física Quàntica i Astrofísica și Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, ​​Barcelona, ​​Spania.
3Departamentul de Fizică Teoretică, CERN, CH-1211 Geneva 23, Elveția.
4Institutul de Fizică, Universitatea Națională Yang Ming Chiao Tung, Hsinchu 30010, Taiwan.
5TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano și INFN Sezione di Milano, Milano, Italia.

Găsiți această lucrare interesant sau doriți să discutați? Scite sau lasă un comentariu la SciRate.

Abstract

Propunem și evaluăm o arhitectură alternativă de generator cuantic în contextul învățării generative contradictorii pentru generarea de evenimente Monte Carlo, utilizată pentru a simula procesele de fizică a particulelor la Large Hadron Collider (LHC). Validăm această metodologie prin implementarea rețelei cuantice pe date artificiale generate din distribuțiile subiacente cunoscute. Rețeaua este apoi aplicată la seturile de date generate de Monte Carlo ale proceselor specifice de împrăștiere LHC. Noua arhitectură a generatorului cuantic duce la o generalizare a implementărilor de ultimă generație, realizând divergențe Kullback-Leibler mai mici chiar și cu rețele cu adâncime mică. Mai mult decât atât, generatorul cuantic învață cu succes funcțiile de distribuție subiacente chiar dacă este antrenat cu seturi mici de mostre de antrenament; acest lucru este deosebit de interesant pentru aplicațiile de creștere a datelor. Implementăm această metodologie nouă pe două arhitecturi hardware cuantice diferite, tehnologii cu ioni prinși și supraconductoare, pentru a-i testa viabilitatea independentă de hardware.

► Date BibTeX

► Referințe

[1] J. Preskill, Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, JC Bardin, R. Barends, R. Biswas, S. Boixo, FGSL Brandao, DA Buell, et al., Nature 574, 505 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[3] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, şi colab., Science 370, 1460 (2020).
https: / / doi.org/ 10.1126 / science.abe8770

[4] M. Cerezo, A. Arrasmith, R. Babbush, SC Benjamin, S. Endo, K. Fujii, JR McClean, K. Mitarai, X. Yuan, L. Cicio, et al., Nature Reviews Physics 3, 625–644 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[5] K. Bharti, A. Cervera-Lierta, TH Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, JS Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek și A. Aspuru-Guzik, Reviews of Modern Physics 94, 015004 (2022).
https: / / doi.org/ 10.1103 / RevModPhys.94.015004

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe și S. Lloyd, Nature 549, 195 (2017).
https: / / doi.org/ 10.1038 / nature23474

[7] M. Schuld și F. Petruccione, Învățare supravegheată cu calculatoare cuantice, Vol. 17 (Springer, 2018).
https:/​/​doi.org/​10.1007/​978-3-319-96424-9

[8] N. Wiebe, D. Braun și S. Lloyd, Physical Review Letters 109, 050505 (2012).
https: / / doi.org/ 10.1103 / PhysRevLett.109.050505

[9] S. Lloyd, M. Mohseni și P. Rebentrost, arXiv preprint arXiv:1307.0411 (2013).
https://​/​doi.org/​10.48550/​arXiv.1307.0411
arXiv: 1307.0411

[10] P. Rebentrost, M. Mohseni și S. Lloyd, Physical Review Letters 113, 130503 (2014).
https: / / doi.org/ 10.1103 / physrevlett.113.130503

[11] I. Kerenidis și A. Prakash, Physical Review A 101, 022316 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.022316

[12] AW Harrow, A. Hassidim și S. Lloyd, Physical Review Letters 103, 150502 (2009).
https: / / doi.org/ 10.1103 / PhysRevLett.103.150502

[13] M. Benedetti, E. Lloyd, S. Sack și M. Fiorentini, Quantum Science and Technology 4, 043001 (2019a).
https:/​/​doi.org/​10.1088/​2058-9565/​ab4eb5

[14] S. Sim, PD Johnson și A. Aspuru-Guzik, Advanced Quantum Technologies 2, 1900070 (2019).
https: / / doi.org/ 10.1002 / qute.201900070

[15] C. Bravo-Prieto, J. Lumbreras-Zarapico, L. Tagliacozzo și JI Latorre, Quantum 4, 272 (2020).
https:/​/​doi.org/​10.22331/​q-2020-05-28-272

[16] M. Larocca, N. Ju, D. García-Martín, PJ Coles și M. Cerezo, arXiv preprint arXiv:2109.11676 (2021).
https://​/​doi.org/​10.48550/​arXiv.2109.11676
arXiv: 2109.11676

[17] M. Schuld, R. Sweke și JJ Meyer, Physical Review A 103, 032430 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.103.032430

[18] T. Goto, QH Tran și K. Nakajima, Physical Review Letters 127, 090506 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.127.090506

[19] A. Pérez-Salinas, D. López-Núñez, A. García-Sáez, P. Forn-Díaz și JI Latorre, Physical Review A 104, 012405 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.104.012405

[20] V. Havlíček, AD Córcoles, K. Temme, AW Harrow, A. Kandala, JM Chow și JM Gambetta, Nature 567, 209 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[21] M. Schuld, A. Bocharov, KM Svore și N. Wiebe, Physical Review A 101, 032308 (2020).
https: / / doi.org/ 10.1103 / physreva.101.032308

[22] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster și JI Latorre, Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[23] T. Dutta, A. Pérez-Salinas, JPS Cheng, JI Latorre și M. Mukherjee, Physical Review A 106, 012411 (2022).
https: / / doi.org/ 10.1103 / PhysRevA.106.012411

[24] J. Romero, JP Olson și A. Aspuru-Guzik, Quantum Science and Technology 2, 045001 (2017).
https: / / doi.org/ 10.1088 / 2058-9565 / aa8072

[25] A. Pepper, N. Tischler și GJ Pryde, Physical Review Letters 122, 060501 (2019).
https: / / doi.org/ 10.1103 / PhysRevLett.122.060501

[26] C. Bravo-Prieto, Machine Learning: Science and Technology 2, 035028 (2021).
https: / / doi.org/ 10.1088 / 2632-2153 / ac0616

[27] C. Cao și X. Wang, Physical Review Applied 15, 054012 (2021).
https: / / doi.org/ 10.1103 / PhysRevApplied.15.054012

[28] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam și A. Perdomo-Ortiz, npj Quantum Information 5, 1 (2019b).
https:/​/​doi.org/​10.1038/​s41534-019-0157-8

[29] KE Hamilton, EF Dumitrescu și RC Pooser, Physical Review A 99, 062323 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.99.062323

[30] B. Coyle, D. Mills, V. Danos și E. Kashefi, npj Quantum Information 6, 1 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00288-9

[31] P.-L. Dallaire-Demers și N. Killoran, Physical Review A 98, 012324 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.98.012324

[32] S. Lloyd și C. Weedbrook, Physical Review Letters 121, 040502 (2018).
https: / / doi.org/ 10.1103 / PhysRevLett.121.040502

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville și Y. Bengio, Communications of the ACM 63, 139–144 (2020).
https: / / doi.org/ 10.1145 / 3422622

[34] C. Zoufal, A. Lucchi și S. Woerner, npj Quantum Information 5, 1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0223-2

[35] J. Zeng, Y. Wu, J.-G. Liu, L. Wang și J. Hu, Physical Review A 99, 052306 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.99.052306

[36] H. Situ, Z. He, Y. Wang, L. Li și S. Zheng, Information Sciences 538, 193 (2020).
https://​/​doi.org/​10.1016/​j.ins.2020.05.127

[37] L. Hu, S.-H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D.-L. Deng, C.-L. Zou, și colab., Science advances 5, eaav2761 (2019).
https: / / doi.org/ 10.1126 / sciadv.aav2761

[38] M. Benedetti, E. Grant, L. Wossnig și S. Severini, New Journal of Physics 21, 043023 (2019c).
https:/​/​doi.org/​10.1088/​1367-2630/​ab14b5

[39] J. Romero și A. Aspuru-Guzik, Advanced Quantum Technologies 4, 2000003 (2021).
https: / / doi.org/ 10.1002 / qute.202000003

[40] MY Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi și H. Neven, Physical Review Letters 128, 220505 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.128.220505

[41] T. Karras, S. Laine și T. Aila, IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 4217 (2021).
https://​/​doi.org/​10.1109/​TPAMI.2020.2970919

[42] A. Pérez-Salinas, J. Cruz-Martinez, AA Alhajri și S. Carrazza, Physical Review D 103, 034027 (2021).
https: / / doi.org/ 10.1103 / PhysRevD.103.034027

[43] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S. Vallecorsa și J.-R. Vlimant, Machine Learning: Science and Technology 2, 011003 (2021).
https://​/​doi.org/​10.1088/​2632-2153/​abc17d

[44] SY Chang, S. Vallecorsa, EF Combarro și F. Carminati, arXiv preprint arXiv:2101.11132 (2021a).
https://​/​doi.org/​10.48550/​arXiv.2101.11132
arXiv: 2101.11132

[45] SY Chang, S. Herbert, S. Vallecorsa, EF Combarro și R. Duncan, EPJ Web of Conferences 251, 03050 (2021b).
https://​/​doi.org/​10.1051/​epjconf/​202125103050

[46] V. Belis, S. González-Castillo, C. Reissel, S. Vallecorsa, EF Combarro, G. Dissertori și F. Reiter, EPJ Web of Conferences 251, 03070 (2021).
https://​/​doi.org/​10.1051/​epjconf/​202125103070

[47] GR Khattak, S. Vallecorsa, F. Carminati și GM Khan, The European Physical Journal C 82, 1 (2022).
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10258-4

[48] P. Baldi, L. Blecher, A. Butter, J. Collado, JN Howard, F. Keilbach, T. Plehn, G. Kasieczka și D. Whiteson, arXiv preprint arXiv:2012.11944 (2021).
https://​/​doi.org/​10.48550/​arXiv.2012.11944
arXiv: 2012.11944

[49] M. Backes, A. Butter, T. Plehn și R. Winterhalder, SciPost Physics 10, 89 (2021).
https: / / doi.org/ 10.21468 / SciPostPhys.10.4.089

[50] A. Butter și T. Plehn, în Artificial Intelligence For High Energy Physics (World Scientific, 2022) pp. 191–240.
https: / / doi.org/ 10.1142 / 9789811234033_0007

[51] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman și T. Plehn, SciPost Physics 10, 139 (2021).
https: / / doi.org/ 10.21468 / SciPostPhys.10.6.139

[52] A. Butter, T. Plehn și R. Winterhalder, SciPost Physics Core 3, 9 (2020).
https://​/​doi.org/​10.21468/​SciPostPhysCore.3.2.009

[53] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn și R. Winterhalder, SciPost Physics 8, 70 (2020).
https: / / doi.org/ 10.21468 / SciPostPhys.8.4.070

[54] A. Butter, T. Plehn și R. Winterhalder, SciPost Physics 7, 75 (2019).
https: / / doi.org/ 10.21468 / SciPostPhys.7.6.075

[55] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, JI Latorre și S. Carrazza, Quantum Science and Technology 7, 015018 ( 2021a).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[56] S. Efthymiou, S. Carrazza, S. Ramos, bpcarlos, AdrianPerezSalinas, D. García-Martín, Paul, J. Serrano și atomicprinter, qiboteam/​qibo: Qibo 0.1.6-rc1 (2021b).
https: / / doi.org/ 10.5281 / zenodo.5088103

[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, GS Corrado, A. Davis, J. Dean, M. Devin și colab., TensorFlow: Învățare automată la scară largă on heterogeneous systems (2015), software disponibil pe tensorflow.org.
https://​/​www.tensorflow.org/​

[58] afrancis heplat, C. Bravo-Prieto, S. Carrazza, M. Cè, J. Baglio și dm grabowska, Qti-th/​style-qgan: v1.0.0 (2021).
https: / / doi.org/ 10.5281 / zenodo.5567077

[59] MD Zeiler, arXiv preprint arXiv:1212.5701 (2012).
https://​/​doi.org/​10.48550/​arXiv.1212.5701
arXiv: 1212.5701

[60] M. Ostaszewski, E. Grant și M. Benedetti, Quantum 5, 391 (2021).
https:/​/​doi.org/​10.22331/​q-2021-01-28-391

[61] S. Kullback şi RA Leibler, The Annals of Mathematical Statistics 22, 79 (1951).
https: / / doi.org/ 10.1214 / aoms / 1177729694

[62] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger și H. Greenspan, în 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018) pp. 289–293.
https://​/​doi.org/​10.1109/​ISBI.2018.8363576

[63] FHK dos Santos Tanaka și C. Aranha, arXiv preprint arXiv:1904.09135 (2019).
https://​/​doi.org/​10.48550/​arXiv.1904.09135
arXiv: 1904.09135

[64] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, HS Shao, T. Stelzer, P. Torrielli și M. Zaro, Journal of High Energy Physics 07, 079 (2014) ).
https: / / doi.org/ 10.1007 / JHEP07 (2014) 079

[65] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, HS Shao și M. Zaro, Journal of High Energy Physics 07, 185 (2018).
https: / / doi.org/ 10.1007 / JHEP07 (2018) 185

[66] I.-K. Yeo și RA Johnson, Biometrika 87, 954 (2000).
https: / / doi.org/ 10.1093 / biomet / 87.4.954

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot și E. Duchesnay, Journal of Machine Learning Research 12, 2825–2830 (2011).
https: / / dl.acm.org/ doi / 10.5555 / 1953048.2078195

[68] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, FJ Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen și colab., Qiskit: An Open-source Framework for Quantum Computing (2019).
https: / / doi.org/ 10.5281 / zenodo.2562111

Citat de

[1] Travis S. Humble, Andrea Delgado, Raphael Pooser, Christopher Seck, Ryan Bennink, Vicente Leyton-Ortega, C. -C. Joseph Wang, Eugene Dumitrescu, Titus Morris, Kathleen Hamilton, Dmitry Lyakh, Prasanna Date, Yan Wang, Nicholas A. Peters, Katherine J. Evans, Marcel Demarteau, Alex McCaskey, Thien Nguyen, Susan Clark, Melissa Reville, Alberto Di Meglio, Michele Grossi, Sofia Vallecorsa, Kerstin Borras, Karl Jansen și Dirk Krücker, „Snowmass White Paper: Quantum Computing Systems and Software for High-energy Physics Research”, arXiv: 2203.07091.

[2] Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan, Gregor Kasieczka, Claudius Krause, David Shih, Vinicius Mikuni, Benjamin Nachman, Kevin Pedro și Daniel Winklehner, „Noi direcții pentru modele surogate și programare diferențiabilă pentru fizica energiei înalte simulare detector”, arXiv: 2203.08806.

[3] Andrea Delgado, Kathleen E. Hamilton, Prasanna Date, Jean-Roch Vlimant, Duarte Magano, Yasser Omar, Pedrame Bargassa, Anthony Francis, Alessio Gianelle, Lorenzo Sestini, Donatella Lucchesi, Davide Zuliani, Davide Nicotra, Jacco de Vries, Dominica Dibenedetto, Miriam Lucio Martinez, Eduardo Rodrigues, Carlos Vazquez Sierra, Sofia Vallecorsa, Jesse Thaler, Carlos Bravo-Prieto, su Yeon Chang, Jeffrey Lazar și Carlos A. Argüelles, „Quantum Computing for Data Analysis in High-Energy Physics” , arXiv: 2203.08805.

[4] Yuxuan Du, Zhuozhuo Tu, Bujiao Wu, Xiao Yuan și Dacheng Tao, „Puterea învățării generative cuantice”, arXiv: 2205.04730.

[5] Stefano Carrazza, Stavros Efthymiou, Marco Lazzarin și Andrea Pasquale, „Un cadru modular open-source pentru calculul cuantic”, arXiv: 2202.07017.

[6] Sandra Nguemto și Vicente Leyton-Ortega, „Re-QGAN: un cadru optimizat de învățare a circuitului cuantic adversar”, arXiv: 2208.02165.

[7] Gabriele Agliardi, Michele Grossi, Mathieu Pellen și Enrico Prati, „Integrarea cuantică a proceselor de particule elementare”, Litere de fizică B 832, 137228 (2022).

[8] Jack Y. Araz și Michael Spannowsky, „Classic versus Quantum: comparing Tensor Network-based Quantum Circuits on LHC data”, arXiv: 2202.10471.

[9] Andrea Delgado și Kathleen E. Hamilton, „Unsupervised Quantum Circuit Learning in High Energy Physics”, arXiv: 2203.03578.

[10] Sulaiman Alvi, Christian Bauer și Benjamin Nachman, „Detecția anomaliilor cuantice pentru fizica coliziunilor”, arXiv: 2206.08391.

[11] Oriel Kiss, Michele Grossi, Enrique Kajomovitz și Sofia Vallecorsa, „Conditional Born machine for Monte Carlo events generation”, arXiv: 2205.07674.

Citatele de mai sus sunt din ADS SAO / NASA (ultima actualizare cu succes 2022-08-18 08:19:35). Lista poate fi incompletă, deoarece nu toți editorii furnizează date de citare adecvate și complete.

On Serviciul citat de Crossref nu s-au găsit date despre citarea lucrărilor (ultima încercare 2022-08-18 08:19:33).

Timestamp-ul:

Mai mult de la Jurnalul cuantic