Stabilizacija Hubbard-Thoulessovih črpalk z nelokalnim fermionskim odbojem

Stabilizacija Hubbard-Thoulessovih črpalk z nelokalnim fermionskim odbojem

Javier Argüello-Luengo1, Manfred J. Mark2,3, Francesca Ferlaino2,3, Maciej Lewenstein1,4, Luca Barbiero5in Sergi Julià-Farré1

1ICFO – Institut de Ciencies Fotoniques, Barcelonski inštitut za znanost in tehnologijo, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Španija
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
3Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
4ICREA, str. Lluís Companys 23, 08010 Barcelona, ​​Španija
5Inštitut za fiziko kondenziranih snovi in ​​kompleksne sisteme, DISAT, Politecnico di Torino, I-10129 Torino, Italija

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Thouless pumping represents a powerful concept to probe quantized topological invariants in quantum systems. We explore this mechanism in a generalized Rice-Mele Fermi-Hubbard model characterized by the presence of competing onsite and intersite interactions. Contrary to recent experimental and theoretical results, showing a breakdown of quantized pumping induced by the onsite repulsion, we prove that sufficiently large intersite interactions allow for an interaction-induced recovery of Thouless pumps. Our analysis further reveals that the occurrence of stable topological transport at large interactions is connected to the presence of a spontaneous bond-order-wave in the ground-state phase diagram of the model. Finally, we discuss a concrete experimental setup based on ultracold magnetic atoms in an optical lattice to realize the newly introduced Thouless pump. Our results provide a new mechanism to stabilize Thouless pumps in interacting quantum systems.

Topological phases have attracted great interest in recent years due to their striking global properties, ultimately related to the presence of a topological invariant robust to local imperfections. While topology exists for systems of noninteracting particles, the addition of many-body interactions is expected to lead to even more exotic phenomena. In this context, we provide numerical evidence of interaction-induced topological properties of one-dimensional fermionic systems, and propose an experimental setup to quantum simulate the model.

For one-dimensional lattice systems, the presence of a global topological invariant manifests itself through the quantized transport of particles in cyclic dynamics experiments, a phenomenon known as Thouless pump. In this work, we numerically simulate these periodic transport dynamics in a chain of fermions subject to both onsite and nearest-neighbor repulsion, to identify for which values of interactions the system is topological, i.e., it transports an integer amount of particles on each cycle of the dynamics. We find that, despite onsite and intersite interactions result in the absence of quantized transport when considered alone, as reported in previous theoretical and experimental works, the simultaneous presence of these two terms leads to exotic regimes in which increasing interactions leads to a recovery of the topological Thouless pump. We also show that magnetic atoms trapped in an optical lattice represent a prime platform to quantum simulate these physics.

This work shows that repulsive fermionic interactions are not fundamentally detrimental to Thouless pumps, opening up the possibility to experimentally observe an interaction-induced recovery of one-dimensional topological transport.

► BibTeX podatki

► Reference

[1] K. proti Klitzingu, G. Dorda in M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
https: / / doi.org/ 10.1103 / PhysRevLett.45.494

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982a).
https: / / doi.org/ 10.1103 / PhysRevLett.49.405

[3] MZ Hasan in CL Kane, Rev. Mod. Phys. 82, 3045 (2010).
https: / / doi.org/ 10.1103 / RevModPhys.82.3045

[4] C.-K. Chiu, JCY Teo, AP Schnyder in S. Ryu, Rev. Mod. Fiz. 88, 035005 (2016).
https: / / doi.org/ 10.1103 / RevModPhys.88.035005

[5] L. D. Landau, E. M. Lifshitz, and M. Pitaevskii, Statistical Physics (Butterworth-Heinemann, New York, 1999).

[6] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).
https:/​/​doi.org/​10.1016/​0370-1573(74)90023-4

[7] K. von Klitzing, Nat. Phys. 13, 198 (2017).
https: / / doi.org/ 10.1038 / nphys4029

[8] C. Nayak, SH Simon, A. Stern, M. Freedman in S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
https: / / doi.org/ 10.1103 / RevModPhys.80.1083

[9] S. Rachel, Rep. Prog. Phys. 81, 116501 (2018).
https:/​/​doi.org/​10.1088/​1361-6633/​aad6a6

[10] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
https: / / doi.org/ 10.1103 / PhysRevB.27.6083

[11] Q. Niu and D. J. Thouless, Journal of Physics A: Mathematical and General 17, 2453 (1984).
https:/​/​doi.org/​10.1088/​0305-4470/​17/​12/​016

[12] E. Berg, M. Levin, and E. Altman, Phys. Rev. Lett. 106, 110405 (2011).
https: / / doi.org/ 10.1103 / PhysRevLett.106.110405

[13] S. Greschner, S. Mondal, and T. Mishra, Phys. Rev. A 101, 053630 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.053630

[14] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F. Heidrich-Meisner, Phys. Rev. B 98, 245148 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.98.245148

[15] S. Mondal, S. Greschner, L. Santos, and T. Mishra, Phys. Rev. A 104, 013315 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.104.013315

[16] L. Lin, Y. Ke, and C. Lee, Phys. Rev. A 101, 023620 (2020a).
https: / / doi.org/ 10.1103 / PhysRevA.101.023620

[17] S. Mondal, A. Padhan, and T. Mishra, Phys. Rev. B 106, L201106 (2022a).
https://​/​doi.org/​10.1103/​PhysRevB.106.L201106

[18] Y. Kuno and Y. Hatsugai, Phys. Rev. Res. 2, 042024 (2020).
https: / / doi.org/ 10.1103 / PhysRevResearch.2.042024

[19] A. Padhan, S. Mondal, S. Vishveshwara, and T. Mishra, “Interacting bosons on a Su-Schrieffer-Heeger ladder: Topological phases and Thouless pumping,” (2023), arXiv:2306.09325 [cond-mat.quant-gas].
arXiv: 2306.09325

[20] M. Nakagawa, T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 98, 115147 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.98.115147

[21] E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Phys. Rev. B 106, 045141 (2022).
https: / / doi.org/ 10.1103 / PhysRevB.106.045141

[22] S. Mondal, E. Bertok, and F. Heidrich-Meisner, Phys. Rev. B 106, 235118 (2022b).
https: / / doi.org/ 10.1103 / PhysRevB.106.235118

[23] S. Mondal, E. Bertok, and F. Heidrich-Meisner, Phys. Rev. B 107, 239903 (2023).
https: / / doi.org/ 10.1103 / PhysRevB.107.239903

[24] RP Feynman, medn. J. Theor. Phys. 21, 467 (1982).
https: / / doi.org/ 10.1007 / bf02650179

[25] J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012).
https: / / doi.org/ 10.1038 / nphys2275

[26] IM Georgescu, S. Ashhab in F. Nori, Rev. Mod. Phys. 86, 153 (2014).
https: / / doi.org/ 10.1103 / RevModPhys.86.153

[27] AJ Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer in P. Zoller, Nature 607, 667 (2022).
https:/​/​doi.org/​10.1038/​s41586-022-04940-6

[28] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson, K.-M. C. Fu, M. Greiner, K. R. Hazzard, R. G. Hulet, A. J. Kollár, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K.-K. Ni, A. C. Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. Spielman, K. Temme, D. S. Weiss, J. Vučković, V. Vuletić, J. Ye, and M. Zwierlein, PRX Quantum 2, 017003 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.017003

[29] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys. 91, 015005 (2019).
https: / / doi.org/ 10.1103 / RevModPhys.91.015005

[30] R. Citro and M. Aidelsburger, Nat. Rev. Phys. 5, 87 (2023).
https:/​/​doi.org/​10.1038/​s42254-022-00545-0

[31] T. Ozawa, HM Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, MC Rechtsman, D. Schuster, J. Simon, O. Zilberberg in I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).
https: / / doi.org/ 10.1103 / RevModPhys.91.015006

[32] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Phys. Rev. Lett. 109, 106402 (2012).
https: / / doi.org/ 10.1103 / PhysRevLett.109.106402

[33] A. Cerjan, M. Wang, S. Huang, K. P. Chen, and M. C. Rechtsman, Light: Science & Applications 9, 178 (2020).
https:/​/​doi.org/​10.1038/​s41377-020-00408-2

[34] M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Nature 596, 63 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03688-9

[35] M. Jürgensen, S. Mukherjee, C. Jörg, and M. C. Rechtsman, Nat. Phys. 19, 420 (2023).
https: / / doi.org/ 10.1038 / s41567-022-01871-x

[36] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch, Nat. Phys. 12, 350 (2016).
https: / / doi.org/ 10.1038 / nphys3584

[37] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296 (2016).
https: / / doi.org/ 10.1038 / nphys3622

[38] J. Minguzzi, Z. Zhu, K. Sandholzer, A.-S. Walter, K. Viebahn, and T. Esslinger, Phys. Rev. Lett. 129, 053201 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.129.053201

[39] A.-S. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S. Roschinski, K. Sandholzer, K. Viebahn, and T. Esslinger, Nat. Phys. 19, 1471 (2023).
https: / / doi.org/ 10.1038 / s41567-023-02145-w

[40] K. Viebahn, A.-S. Walter, E. Bertok, Z. Zhu, M. Gächter, A. A. Aligia, F. Heidrich-Meisner, and T. Esslinger, “Interaction-induced charge pumping in a topological many-body system,” (2023), arXiv:2308.03756 [cond-mat.quant-gas].
arXiv: 2308.03756

[41] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum many-body systems, Vol. 54 (Oxford University Press, Oxford, 2012).
http:/​/​www.oxfordscholarship.com/​view/​10.1093/​acprof:oso/​9780199573127.001.0001/​acprof-9780199573127

[42] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
https: / / doi.org/ 10.1103 / RevModPhys.80.885

[43] P. Sompet, S. Hirthe, D. Bourgund, T. Chalopin, J. Bibo, J. Koepsell, P. Bojović, R. Verresen, F. Pollmann, G. Salomon, C. Gross, T. A. Hilker, and I. Bloch, Nature 606, 484 (2022).
https: / / doi.org/ 10.1038 / s41586-022-04688-z

[44] J. Léonard, S. Kim, J. Kwan, P. Segura, F. Grusdt, C. Repellin, N. Goldman, and M. Greiner, Nature 619, 495 (2023).
https:/​/​doi.org/​10.1038/​s41586-023-06122-4

[45] S. Ejima and S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007).
https: / / doi.org/ 10.1103 / PhysRevLett.99.216403

[46] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).
https:/​/​doi.org/​10.1088/​0034-4885/​72/​12/​126401

[47] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and T. Pfau, Reports on Progress in Physics 86, 026401 (2022).
https://​/​doi.org/​10.1088/​1361-6633/​aca814

[48] U. Schollwöck, Ann. Phys. 326, 96 (2011).
https: / / doi.org/ 10.1016 / j.aop.2010.09.012

[49] J. Hauschild in F. Pollmann, SciPost Phys. Pred. Beležke , 5 (2018).
https: / / doi.org/ 10.21468 / SciPostPhysLectNotes

[50] M. Nakamura, J. Phys. Soc. Japan 68, 3123 (1999).
https: / / doi.org/ 10.1143 / JPSJ.68.3123

[51] M. Nakamura, Phys. Rev. B 61, 16377 (2000).
https: / / doi.org/ 10.1103 / PhysRevB.61.16377

[52] E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002).
https: / / doi.org/ 10.1103 / PhysRevLett.89.236401

[53] P. Sengupta, A. W. Sandvik, and D. K. Campbell, Phys. Rev. B 65, 155113 (2002).
https: / / doi.org/ 10.1103 / PhysRevB.65.155113

[54] A. W. Sandvik, L. Balents, and D. K. Campbell, Phys. Rev. Lett. 92, 236401 (2004).
https: / / doi.org/ 10.1103 / PhysRevLett.92.236401

[55] Y. Z. Zhang, Phys. Rev. Lett. 92, 246404 (2004).
https: / / doi.org/ 10.1103 / PhysRevLett.92.246404

[56] K.-M. Tam, S.-W. Tsai, and D. K. Campbell, Phys. Rev. Lett. 96, 036408 (2006).
https: / / doi.org/ 10.1103 / PhysRevLett.96.036408

[57] S. Glocke, A. Klümper, and J. Sirker, Phys. Rev. B 76, 155121 (2007).
https: / / doi.org/ 10.1103 / PhysRevB.76.155121

[58] M. Di Dio, L. Barbiero, A. Recati, and M. Dalmonte, Phys. Rev. A 90, 063608 (2014).
https: / / doi.org/ 10.1103 / PhysRevA.90.063608

[59] S. Julià-Farré, D. González-Cuadra, A. Patscheider, M. J. Mark, F. Ferlaino, M. Lewenstein, L. Barbiero, and A. Dauphin, Phys. Rev. Res. 4, L032005 (2022).
https://​/​doi.org/​10.1103/​PhysRevResearch.4.L032005

[60] M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).
https: / / doi.org/ 10.1103 / PhysRevLett.49.1455

[61] WP Su, JR Schrieffer in AJ Heeger, Phys. Rev. Lett. 42, 1698 (1979).
https: / / doi.org/ 10.1103 / PhysRevLett.42.1698

[62] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​6/​065010

[63] S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gurarie, Phys. Rev. B 86, 205119 (2012).
https: / / doi.org/ 10.1103 / PhysRevB.86.205119

[64] V. Gurarie, Phys. Rev. B 83, 085426 (2011).
https: / / doi.org/ 10.1103 / PhysRevB.83.085426

[65] T. Yoshida, R. Peters, S. Fujimoto, and N. Kawakami, Phys. Rev. Lett. 112, 196404 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.112.196404

[66] D. Wang, S. Xu, Y. Wang, and C. Wu, Phys. Rev. B 91, 115118 (2015).
https: / / doi.org/ 10.1103 / PhysRevB.91.115118

[67] B.-T. Ye, L.-Z. Mu, and H. Fan, Phys. Rev. B 94, 165167 (2016).
https: / / doi.org/ 10.1103 / PhysRevB.94.165167

[68] B. Sbierski and C. Karrasch, Phys. Rev. B 98, 165101 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.98.165101

[69] L. Barbiero, L. Santos, and N. Goldman, Phys. Rev. B 97, 201115 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.97.201115

[70] N. H. Le, A. J. Fisher, N. J. Curson, and E. Ginossar, npj Quantum Inf. 6, 24 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-0253-9

[71] Y.-T. Lin, D. M. Kennes, M. Pletyukhov, C. S. Weber, H. Schoeller, and V. Meden, Phys. Rev. B 102, 085122 (2020b).
https: / / doi.org/ 10.1103 / PhysRevB.102.085122

[72] A. Montorsi, U. Bhattacharya, D. González-Cuadra, M. Lewenstein, G. Palumbo, and L. Barbiero, Phys. Rev. B 106, L241115 (2022).
https://​/​doi.org/​10.1103/​PhysRevB.106.L241115

[73] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982b).
https: / / doi.org/ 10.1103 / PhysRevLett.49.405

[74] SR White, Phys. Rev. Lett. 69, 2863 (1992).
https: / / doi.org/ 10.1103 / PhysRevLett.69.2863

[75] R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).
https: / / doi.org/ 10.1103 / PhysRevB.78.155117

[76] J. A. Marks, M. Schüler, J. C. Budich, and T. P. Devereaux, Phys. Rev. B 103, 035112 (2021).
https: / / doi.org/ 10.1103 / PhysRevB.103.035112

[77] K. Loida, J.-S. Bernier, R. Citro, E. Orignac, and C. Kollath, Phys. Rev. Lett. 119, 230403 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.230403

[78] L. Barbiero, A. Montorsi, and M. Roncaglia, Phys. Rev. B 88, 035109 (2013).
https: / / doi.org/ 10.1103 / PhysRevB.88.035109

[79] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, Nature 462, 74 (2009).
https: / / doi.org/ 10.1038 / nature08482

[80] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M. C. Bañuls, L. Pollet, I. Bloch, and S. Kuhr, Science 334, 200 (2011).
https: / / doi.org/ 10.1126 / znanost.1209284

[81] T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E. Demler, I. Bloch, and C. Gross, Science 357, 484 (2017).
https: / / doi.org/ 10.1126 / science.aam8990

[82] A. Patscheider, B. Zhu, L. Chomaz, D. Petter, S. Baier, A.-M. Rey, F. Ferlaino, and M. J. Mark, Phys. Rev. Research 2, 023050 (2020).
https: / / doi.org/ 10.1103 / PhysRevResearch.2.023050

[83] L. Su, A. Douglas, M. Szurek, R. Groth, S. F. Ozturk, A. Krahn, A. H. Hébert, G. A. Phelps, S. Ebadi, S. Dickerson, F. Ferlaino, O. Marković, and M. Greiner, Nature 622, 724 (2023).
https:/​/​doi.org/​10.1038/​s41586-023-06614-3

[84] S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L. Chomaz, M. J. Mark, and F. Ferlaino, Phys. Rev. Lett. 121, 093602 (2018).
https: / / doi.org/ 10.1103 / PhysRevLett.121.093602

[85] J. Fraxanet, D. González-Cuadra, T. Pfau, M. Lewenstein, T. Langen, and L. Barbiero, Phys. Rev. Lett. 128, 043402 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.128.043402

[86] M. Sohmen, M. J. Mark, M. Greiner, and F. Ferlaino, SciPost Phys. 15, 182 (2023).
https: / / doi.org/ 10.21468 / SciPostPhys.15.5.182

[87] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, and C. Chin, Phys. Rev. A 79, 013622 (2009).
https: / / doi.org/ 10.1103 / PhysRevA.79.013622

Navedel

[1] Sergi Julià-Farré, Javier Argüello-Luengo, Loïc Henriet, and Alexandre Dauphin, “Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays”, arXiv: 2402.09311, (2024).

[2] Ashirbad Padhan and Tapan Mishra, “Disorder driven Thouless charge pump in a quasiperiodic chain”, arXiv: 2312.16568, (2023).

Zgornji citati so iz SAO / NASA ADS (zadnjič posodobljeno 2024-03-16 01:49:46). Seznam je morda nepopoln, saj vsi založniki ne dajejo ustreznih in popolnih podatkov o citiranju.

On Crossref je navedel storitev ni bilo najdenih podatkov o navajanju del (zadnji poskus 2024-03-16 01:49:45).

Časovni žig:

Več od Quantum Journal