Na slogu temelječa kvantna generativna kontradiktorna omrežja za dogodke v Monte Carlu PlatoBlockchain Data Intelligence. Navpično iskanje. Ai.

Na slogu temelječa kvantna generativna kontradiktorna omrežja za dogodke v Monte Carlu

Carlos Bravo-Prieto1,2, Julien Baglio3, Marco Cè3, Anthony Francis3,4, Dorota M. Grabowska3, in Stefano Carrazza1,3,5

1Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, ZAE
2Departament de Física Quantica i Astrofísica in Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, ​​Barcelona, ​​Španija.
3Oddelek za teoretično fiziko, CERN, CH-1211 Ženeva 23, Švica.
4Inštitut za fiziko, Nacionalna univerza Yang Ming Chiao Tung, Hsinchu 30010, Tajvan.
5TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano in INFN Sezione di Milano, Milano, Italija.

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Predlagamo in ocenjujemo alternativno arhitekturo kvantnega generatorja v kontekstu generativnega kontradiktornega učenja za generiranje dogodkov Monte Carlo, ki se uporablja za simulacijo procesov fizike delcev na velikem hadronskem trkalniku (LHC). To metodologijo potrdimo z implementacijo kvantne mreže na umetnih podatkih, ustvarjenih iz znanih osnovnih distribucij. Omrežje se nato uporabi za nize podatkov, ustvarjene v Monte Carlu, o specifičnih procesih sipanja LHC. Nova arhitektura kvantnega generatorja vodi do posplošitve najsodobnejših izvedb, ki dosegajo manjša odstopanja Kullback-Leibler tudi pri omrežjih majhne globine. Poleg tega se kvantni generator uspešno nauči osnovnih porazdelitvenih funkcij, tudi če se uri z majhnimi nizi vzorcev za usposabljanje; to je še posebej zanimivo za aplikacije za povečanje podatkov. To novo metodologijo uporabljamo na dveh različnih arhitekturah kvantne strojne opreme, tehnologijah ujetih ionov in superprevodnih tehnologijah, da preizkusimo njeno sposobnost preživetja, neodvisno od strojne opreme.

► BibTeX podatki

► Reference

[1] J. Preskill, kvant 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, JC Bardin, R. Barends, R. Biswas, S. Boixo, FGSL Brandao, DA Buell, et al., Nature 574, 505 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[3] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., Science 370, 1460 (2020).
https: / / doi.org/ 10.1126 / science.abe8770

[4] M. Cerezo, A. Arrasmith, R. Babbush, SC Benjamin, S. Endo, K. Fujii, JR McClean, K. Mitarai, X. Yuan, L. Cincio, et al., Nature Reviews Physics 3, 625–644 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[5] K. Bharti, A. Cervera-Lierta, TH Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, JS Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek in A. Aspuru-Guzik, Reviews of Modern Physics 94, 015004 (2022).
https: / / doi.org/ 10.1103 / RevModPhys.94.015004

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe in S. Lloyd, Nature 549, 195 (2017).
https: / / doi.org/ 10.1038 / nature23474

[7] M. Schuld in F. Petruccione, Nadzorovano učenje s kvantnimi računalniki, Vol. 17 (Springer, 2018).
https:/​/​doi.org/​10.1007/​978-3-319-96424-9

[8] N. Wiebe, D. Braun in S. Lloyd, Physical Review Letters 109, 050505 (2012).
https: / / doi.org/ 10.1103 / PhysRevLett.109.050505

[9] S. Lloyd, M. Mohseni in P. Rebentrost, prednatis arXiv arXiv:1307.0411 (2013).
https://​/​doi.org/​10.48550/​arXiv.1307.0411
arXiv: 1307.0411

[10] P. Rebentrost, M. Mohseni in S. Lloyd, Physical Review Letters 113, 130503 (2014).
https: / / doi.org/ 10.1103 / physrevlett.113.130503

[11] I. Kerenidis in A. Prakash, Physical Review A 101, 022316 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.022316

[12] AW Harrow, A. Hassidim in S. Lloyd, Physical Review Letters 103, 150502 (2009).
https: / / doi.org/ 10.1103 / PhysRevLett.103.150502

[13] M. Benedetti, E. Lloyd, S. Sack in M. Fiorentini, Kvantna znanost in tehnologija 4, 043001 (2019a).
https:/​/​doi.org/​10.1088/​2058-9565/​ab4eb5

[14] S. Sim, PD Johnson in A. Aspuru-Guzik, Napredne kvantne tehnologije 2, 1900070 (2019).
https: / / doi.org/ 10.1002 / qute.201900070

[15] C. Bravo-Prieto, J. Lumbreras-Zarapico, L. Tagliacozzo in JI Latorre, Quantum 4, 272 (2020).
https:/​/​doi.org/​10.22331/​q-2020-05-28-272

[16] M. Larocca, N. Ju, D. García-Martín, PJ Coles in M. Cerezo, prednatis arXiv arXiv:2109.11676 (2021).
https://​/​doi.org/​10.48550/​arXiv.2109.11676
arXiv: 2109.11676

[17] M. Schuld, R. Sweke in JJ Meyer, Physical Review A 103, 032430 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.103.032430

[18] T. Goto, QH Tran in K. Nakajima, Physical Review Letters 127, 090506 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.127.090506

[19] A. Pérez-Salinas, D. López-Núñez, A. García-Sáez, P. Forn-Díaz in JI Latorre, Physical Review A 104, 012405 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.104.012405

[20] V. Havlíček, AD Córcoles, K. Temme, AW Harrow, A. Kandala, JM Chow in JM Gambetta, Nature 567, 209 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[21] M. Schuld, A. Bocharov, KM Svore in N. Wiebe, Physical Review A 101, 032308 (2020).
https: / / doi.org/ 10.1103 / physreva.101.032308

[22] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster in JI Latorre, Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[23] T. Dutta, A. Pérez-Salinas, JPS Cheng, JI Latorre in M. Mukherjee, Physical Review A 106, 012411 (2022).
https: / / doi.org/ 10.1103 / PhysRevA.106.012411

[24] J. Romero, JP Olson in A. Aspuru-Guzik, Quantum Science and Technology 2, 045001 (2017).
https: / / doi.org/ 10.1088 / 2058-9565 / aa8072

[25] A. Pepper, N. Tischler in GJ Pryde, Physical Review Letters 122, 060501 (2019).
https: / / doi.org/ 10.1103 / PhysRevLett.122.060501

[26] C. Bravo-Prieto, Strojno učenje: znanost in tehnologija 2, 035028 (2021).
https: / / doi.org/ 10.1088 / 2632-2153 / ac0616

[27] C. Cao in X. Wang, Physical Review Applied 15, 054012 (2021).
https: / / doi.org/ 10.1103 / PhysRevApplied.15.054012

[28] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam in A. Perdomo-Ortiz, npj Quantum Information 5, 1 (2019b).
https:/​/​doi.org/​10.1038/​s41534-019-0157-8

[29] KE Hamilton, EF Dumitrescu in RC Pooser, Physical Review A 99, 062323 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.99.062323

[30] B. Coyle, D. Mills, V. Danos in E. Kashefi, npj Quantum Information 6, 1 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00288-9

[31] P.-L. Dallaire-Demers in N. Killoran, Physical Review A 98, 012324 (2018).
https: / / doi.org/ 10.1103 / PhysRevA.98.012324

[32] S. Lloyd in C. Weedbrook, Physical Review Letters 121, 040502 (2018).
https: / / doi.org/ 10.1103 / PhysRevLett.121.040502

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville in Y. Bengio, Sporočila ACM 63, 139–144 (2020).
https: / / doi.org/ 10.1145 / 3422622

[34] C. Zoufal, A. Lucchi in S. Woerner, npj Kvantne informacije 5, 1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0223-2

[35] J. Zeng, Y. Wu, J.-G. Liu, L. Wang in J. Hu, Physical Review A 99, 052306 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.99.052306

[36] H. Situ, Z. He, Y. Wang, L. Li in S. Zheng, Informacijske znanosti 538, 193 (2020).
https://doi.org/ 10.1016/j.ins.2020.05.127

[37] L. Hu, S.-H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D.-L. Deng, C.-L. Zou, et al., Znanstveni napredek 5, eaav2761 (2019).
https: / / doi.org/ 10.1126 / sciadv.aav2761

[38] M. Benedetti, E. Grant, L. Wossnig in S. Severini, New Journal of Physics 21, 043023 (2019c).
https:/​/​doi.org/​10.1088/​1367-2630/​ab14b5

[39] J. Romero in A. Aspuru-Guzik, Napredne kvantne tehnologije 4, 2000003 (2021).
https: / / doi.org/ 10.1002 / qute.202000003

[40] MY Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi in H. Neven, Physical Review Letters 128, 220505 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.128.220505

[41] T. Karras, S. Laine in T. Aila, Transakcije IEEE o analizi vzorcev in strojni inteligenci 43, 4217 (2021).
https: / / doi.org/ 10.1109 / TPAMI.2020.2970919

[42] A. Pérez-Salinas, J. Cruz-Martinez, AA Alhajri in S. Carrazza, Physical Review D 103, 034027 (2021).
https: / / doi.org/ 10.1103 / PhysRevD.103.034027

[43] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S. Vallecorsa in J.-R. Vlimant, Strojno učenje: znanost in tehnologija 2, 011003 (2021).
https://​/​doi.org/​10.1088/​2632-2153/​abc17d

[44] SY Chang, S. Vallecorsa, EF Combarro in F. Carminati, prednatis arXiv arXiv:2101.11132 (2021a).
https://​/​doi.org/​10.48550/​arXiv.2101.11132
arXiv: 2101.11132

[45] SY Chang, S. Herbert, S. Vallecorsa, EF Combarro in R. Duncan, EPJ Web of Conferences 251, 03050 (2021b).
https://doi.org/ 10.1051/epjconf/202125103050

[46] V. Belis, S. González-Castillo, C. Reissel, S. Vallecorsa, EF Combarro, G. Dissertori in F. Reiter, EPJ Web of Conferences 251, 03070 (2021).
https://doi.org/ 10.1051/epjconf/202125103070

[47] GR Khattak, S. Vallecorsa, F. Carminati in GM Khan, The European Physical Journal C 82, 1 (2022).
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10258-4

[48] P. Baldi, L. Blecher, A. Butter, J. Collado, JN Howard, F. Keilbach, T. Plehn, G. Kasieczka in D. Whiteson, prednatis arXiv arXiv:2012.11944 (2021).
https://​/​doi.org/​10.48550/​arXiv.2012.11944
arXiv: 2012.11944

[49] M. Backes, A. Butter, T. Plehn in R. Winterhalder, SciPost Physics 10, 89 (2021).
https: / / doi.org/ 10.21468 / SciPostPhys.10.4.089

[50] A. Butter in T. Plehn, v Umetna inteligenca za fiziko visokih energij (World Scientific, 2022) str. 191–240.
https: / / doi.org/ 10.1142 / 9789811234033_0007

[51] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman in T. Plehn, SciPost Physics 10, 139 (2021).
https: / / doi.org/ 10.21468 / SciPostPhys.10.6.139

[52] A. Butter, T. Plehn in R. Winterhalder, SciPost Physics Core 3, 9 (2020).
https://doi.org/ 10.21468/SciPostPhysCore.3.2.009

[53] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn in R. Winterhalder, SciPost Physics 8, 70 (2020).
https: / / doi.org/ 10.21468 / SciPostPhys.8.4.070

[54] A. Butter, T. Plehn in R. Winterhalder, SciPost Physics 7, 75 (2019).
https: / / doi.org/ 10.21468 / SciPostPhys.7.6.075

[55] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, JI Latorre in S. Carrazza, Quantum Science and Technology 7, 015018 ( 2021a).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[56] S. Efthymiou, S. Carrazza, S. Ramos, bpcarlos, AdrianPerezSalinas, D. García-Martín, Paul, J. Serrano in atomicprinter, qiboteam/​qibo: Qibo 0.1.6-rc1 (2021b).
https: / / doi.org/ 10.5281 / zenodo.5088103

[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, GS Corrado, A. Davis, J. Dean, M. Devin et al., TensorFlow: strojno učenje velikega obsega o heterogenih sistemih (2015), programska oprema je na voljo na tensorflow.org.
https://​/​www.tensorflow.org/​

[58] afrancis heplat, C. Bravo-Prieto, S. Carrazza, M. Cè, J. Baglio in dm grabowska, Qti-th/​style-qgan: v1.0.0 (2021).
https: / / doi.org/ 10.5281 / zenodo.5567077

[59] MD Zeiler, prednatis arXiv arXiv:1212.5701 (2012).
https://​/​doi.org/​10.48550/​arXiv.1212.5701
arXiv: 1212.5701

[60] M. Ostaszewski, E. Grant in M. Benedetti, Quantum 5, 391 (2021).
https:/​/​doi.org/​10.22331/​q-2021-01-28-391

[61] S. Kullback in RA Leibler, The Annals of Mathematical Statistics 22, 79 (1951).
https: / / doi.org/ 10.1214 / aoms / 1177729694

[62] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger in H. Greenspan, leta 2018 na 15. mednarodnem simpoziju IEEE o biomedicinskem slikanju (ISBI 2018) (2018), str. 289–293.
https://​/​doi.org/​10.1109/​ISBI.2018.8363576

[63] FHK dos Santos Tanaka in C. Aranha, prednatis arXiv arXiv:1904.09135 (2019).
https://​/​doi.org/​10.48550/​arXiv.1904.09135
arXiv: 1904.09135

[64] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, HS Shao, T. Stelzer, P. Torrielli in M. Zaro, Journal of High Energy Physics 07, 079 (2014) ).
https: / / doi.org/ 10.1007 / JHEP07 (2014) 079

[65] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, HS Shao in M. Zaro, Journal of High Energy Physics 07, 185 (2018).
https: / / doi.org/ 10.1007 / JHEP07 (2018) 185

[66] VEM. Yeo in RA Johnson, Biometrika 87, 954 (2000).
https: / / doi.org/ 10.1093 / biomet / 87.4.954

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot in E. Duchesnay, Journal of Machine Learning Research 12, 2825–2830 (2011).
https: / / dl.acm.org/ doi / 10.5555 / 1953048.2078195

[68] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, FJ Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen et al., Qiskit: Odprtokodni okvir za kvantno računalništvo (2019).
https: / / doi.org/ 10.5281 / zenodo.2562111

Navedel

[1] Travis S. Humble, Andrea Delgado, Raphael Pooser, Christopher Seck, Ryan Bennink, Vicente Leyton-Ortega, C. -C. Joseph Wang, Eugene Dumitrescu, Titus Morris, Kathleen Hamilton, Dmitry Lyakh, Prasanna Date, Yan Wang, Nicholas A. Peters, Katherine J. Evans, Marcel Demarteau, Alex McCaskey, Thien Nguyen, Susan Clark, Melissa Reville, Alberto Di Meglio, Michele Grossi, Sofia Vallecorsa, Kerstin Borras, Karl Jansen in Dirk Krücker, "Bela knjiga Snowmass: kvantni računalniški sistemi in programska oprema za raziskave fizike visokih energij", arXiv: 2203.07091.

[2] Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan, Gregor Kasieczka, Claudius Krause, David Shih, Vinicius Mikuni, Benjamin Nachman, Kevin Pedro in Daniel Winklehner, »Nove smernice za nadomestne modele in diferencialno programiranje za fiziko visokih energij simulacija detektorja", arXiv: 2203.08806.

[3] Andrea Delgado, Kathleen E. Hamilton, Prasanna Date, Jean-Roch Vlimant, Duarte Magano, Yasser Omar, Pedrame Bargassa, Anthony Francis, Alessio Gianelle, Lorenzo Sestini, Donatella Lucchesi, Davide Zuliani, Davide Nicotra, Jacco de Vries, Dominica Dibenedetto, Miriam Lucio Martinez, Eduardo Rodrigues, Carlos Vazquez Sierra, Sofia Vallecorsa, Jesse Thaler, Carlos Bravo-Prieto, su Yeon Chang, Jeffrey Lazar in Carlos A. Argüelles, »Kvantno računalništvo za analizo podatkov v fiziki visokih energij« , arXiv: 2203.08805.

[4] Yuxuan Du, Zhuozhuo Tu, Bujiao Wu, Xiao Yuan in Dacheng Tao, »Moč kvantnega generativnega učenja«, arXiv: 2205.04730.

[5] Stefano Carrazza, Stavros Efthymiou, Marco Lazzarin in Andrea Pasquale, "Odprtokodni modularni okvir za kvantno računalništvo", arXiv: 2202.07017.

[6] Sandra Nguemto in Vicente Leyton-Ortega, "Re-QGAN: optimizirano kontradiktorno ogrodje učenja kvantnega vezja", arXiv: 2208.02165.

[7] Gabriele Agliardi, Michele Grossi, Mathieu Pellen in Enrico Prati, »Kvantna integracija procesov elementarnih delcev«, Physics Letters B 832, 137228 (2022).

[8] Jack Y. Araz in Michael Spannowsky, »Classical versus Quantum: comparing Tensor Network-based Quantum Circuits on LHC data«, arXiv: 2202.10471.

[9] Andrea Delgado in Kathleen E. Hamilton, »Nenadzorovano učenje kvantnih vezij v fiziki visokih energij«, arXiv: 2203.03578.

[10] Sulaiman Alvi, Christian Bauer in Benjamin Nachman, »Odkrivanje kvantnih anomalij za fiziko trkalnikov«, arXiv: 2206.08391.

[11] Oriel Kiss, Michele Grossi, Enrique Kajomovitz in Sofia Vallecorsa, »Conditional Born machine for Monte Carlo Events Generation«, arXiv: 2205.07674.

Zgornji citati so iz SAO / NASA ADS (zadnjič posodobljeno 2022-08-18 08:19:35). Seznam je morda nepopoln, saj vsi založniki ne dajejo ustreznih in popolnih podatkov o citiranju.

On Crossref je navedel storitev ni bilo najdenih podatkov o navajanju del (zadnji poskus 2022-08-18 08:19:33).

Časovni žig:

Več od Quantum Journal