Qibolab: odprtokodni hibridni kvantni operacijski sistem

Qibolab: odprtokodni hibridni kvantni operacijski sistem

Stavros Efthymiou1, Alvaro Orgaz-Fuertes1, Rodolfo Carobene2,3,1, Juan Cereijo1,4, Andrea Pasquale1,5,6, Sergi Ramos-Calderer1,4, Simone Bordoni1,7,8, David Fuentes-Ruiz1, Alessandro Candido5,6,9, Edoardo Pedicillo1,5,6, Matteo Robbiati5,9, Yuanzheng Paul Tan10, Jadwiga Wilkens1, Ingo Roth1, José Ignacio Latorre1,11,4, in Stefano Carrazza9,5,6,1

1Quantum Research Center, Technology Innovation Institute, Abu Dhabi, ZAE.
2Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Italija.
3INFN – Sezione di Milano Bicocca, I-20126 Milano, Italija.
4Departament de Física Quantica i Astrofísica in Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, ​​Barcelona, ​​Španija.
5Laboratorij TIF, Dipartimento di Fisica, Università degli Studi di Milano, Italija
6INFN, Sezione di Milano, I-20133 Milano, Italija.
7Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rim, Italija
8Univerza La Sapienza v Rimu, odd. fizike, Rim, Italija
9CERN, Oddelek za teoretično fiziko, CH-1211 Ženeva 23, Švica.
10Oddelek za fiziko in uporabno fiziko, Šola za fizikalne in matematične vede, Tehnološka univerza Nanyang, 21 Nanyang Link, Singapur 637371, Singapur.
11Center za kvantne tehnologije, Nacionalna univerza v Singapurju, Singapur.

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Predstavljamo $texttt{Qibolab}$, knjižnico odprtokodne programske opreme za nadzor kvantne strojne opreme, integrirano z okvirjem vmesne programske opreme za kvantno računalništvo $texttt{Qibo}$. $texttt{Qibolab}$ zagotavlja plast programske opreme, ki je potrebna za samodejno izvajanje algoritmov, ki temeljijo na vezjih, na samohostujočih kvantnih strojnih platformah po meri. Predstavljamo niz objektov, zasnovanih za zagotavljanje programskega dostopa do kvantnega nadzora prek impulzno usmerjenih gonilnikov za instrumente, transpilerje in optimizacijske algoritme. $texttt{Qibolab}$ omogoča eksperimentatorjem in razvijalcem, da prenesejo vse zapletene vidike implementacije strojne opreme v knjižnico, tako da lahko standardizirajo uporabo algoritmov kvantnega računalništva na razširljiv način, ki ni povezan s strojno opremo, z uporabo superprevodnih kubitov kot prve uradno podprte kvantne tehnologije. Najprej opišemo status vseh komponent knjižnice, nato pa pokažemo primere nastavitve nadzora za platforme superprevodnih kubitov. Nazadnje predstavljamo rezultate uspešnih aplikacij, povezanih z algoritmi, ki temeljijo na vezjih.

Predstavljamo Qibolab, odprtokodno programsko knjižnico za nadzor kvantne strojne opreme, integrirano s Qibo, hibridnim kvantnim operacijskim sistemom. Qibolab zagotavlja plast programske opreme, ki je potrebna za samodejno izvajanje algoritmov, ki temeljijo na vezju, na prilagojenih platformah kvantne strojne opreme, ki gostujejo sami. Ta programska oprema omogoča eksperimentatorjem in razvijalcem kvantne programske opreme, da prenesejo vse zapletene vidike implementacije strojne opreme v knjižnico, tako da lahko standardizirajo uvajanje kvantnih računalniških algoritmov na razširljiv način, neodvisen od strojne opreme.

► BibTeX podatki

► Reference

[1] R. Brun in F. Rademakers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389, 81 (1997), New Computing Techniques in Physics Research V.
https:/​/​doi.org/​10.1016/​S0168-9002(97)00048-X

[2] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli in M. Zaro, Journal of High Energy Physics 2014, 10.1007/​jhep07(2014)079 (2014).
https: / / doi.org/ 10.1007 / jhep07 (2014) 079

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, GS Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp , G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke , Y. Yu in X. Zheng, TensorFlow: Strojno učenje velikega obsega na heterogenih sistemih (2015), programska oprema, ki je na voljo na tensorflow.org.
https://​/​www.tensorflow.org/​

[4] Cirq, ogrodje python za ustvarjanje, urejanje in priklic vezij Noisy Intermediate Scale Quantum (NISQ) (2018).
https: / / github.com/ quantumlib / Cirq

[5] M. Broughton in drugi, Tensorflow quantum: programsko ogrodje za kvantno strojno učenje (2020).
https://​/​doi.org/​10.48550/​arXiv.2003.02989

[6] H. Abraham in drugi, Qiskit: Odprtokodni okvir za kvantno računalništvo (2019).
https: / / doi.org/ 10.5281 / zenodo.2562110

[7] RS Smith, MJ Curtis in WJ Zeng, Praktična arhitektura kvantnega niza ukazov (2016).
https://​/​doi.org/​10.48550/​arXiv.1608.03355

[8] GG Guerreschi, J. Hogaboam, F. Baruffa in NPD Sawaya, Kvantna znanost in tehnologija 5, str. 034007 (2020).
https: / / doi.org/ 10.1088 / 2058-9565 / ab8505

[9] A. Kelly, Simulacija kvantnih računalnikov z uporabo opencl (2018).
https://​/​doi.org/​10.48550/​arXiv.1805.00988

[10] Razvijalci Qulacs, Qulacs (2018).
https://github.com/ qulacs/qulacs

[11] T. Jones, A. Brown, I. Bush in SC Benjamin, Znanstvena poročila 9, 10.1038/​s41598-019-47174-9 (2019).
https:/​/​doi.org/​10.1038/​s41598-019-47174-9

[12] P. Zhang, J. Yuan in X. Lu, v Algorithms and Architectures for Parallel Processing, uredili G. Wang, A. Zomaya, G. Martinez in K. Li (Springer International Publishing, Cham, 2015) str. 241–256.
https:/​/​doi.org/​10.1007/​978-3-319-27119-4_17

[13] DS Steiger, T. Häner in M. Troyer, Quantum 2, 49 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-31-49

[14] Programski jezik Q# (2017).
https://​/​docs.microsoft.com/​en-us/​quantum/​user-guide/​?view=qsharp-preview

[15] A. Zulehner in R. Wille, Napredna simulacija kvantnih izračunov (2017).
https://​/​doi.org/​10.48550/​arXiv.1707.00865

[16] E. Pednault in drugi, Pareto-učinkovita simulacija kvantnega vezja z uporabo odloga kontrakcije tenzorja (2017).
https://​/​doi.org/​10.48550/​arXiv.1710.05867

[17] S. Bravyi in D. Gosset, Physical Review Letters 116, str. 250501 (2016).
https: / / doi.org/ 10.1103 / PhysRevLett.116.250501

[18] K. De Raedt in drugi, Computer Physics Communications 176, str. 121 (2007).
https: / / doi.org/ 10.1016 / j.cpc.2006.08.007

[19] ES Fried in drugi, PLOS ONE 13, e0208510 (2018).
https: / / doi.org/ 10.1371 / journal.pone.0208510

[20] B. Villalonga in drugi, npj Kvantne informacije 5, 10.1038/​s41534-019-0196-1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0196-1

[21] X.-Z. Luo, J.-G. Liu, P. Zhang in L. Wang, Yao.jl: Razširljiv, učinkovit okvir za načrtovanje kvantnega algoritma (2019), [quant-ph].
https:/​/​doi.org/​10.22331/​q-2020-10-11-341

[22] V. Bergholm in drugi, Pennylane: Samodejna diferenciacija hibridnih kvantno-klasičnih izračunov (2018), arXiv:1811.04968 [quant-ph].
arXiv: 1811.04968

[23] J. Doi in drugi, v zborniku 16. mednarodne konference ACM o računalniških mejah, CF '19 (Association for Computing Machinery, New York, NY, ZDA, 2019) str. 85–93.
https: / / doi.org/ 10.1145 / 3310273.3323053

[24] M. Möller in M. Schalkers, v Computational Science – ICCS 2020, uredili VV Krzhizhanovskaya, G. Závodszky, MH Lees, JJ Dongarra, PMA Sloot, S. Brissos in J. Teixeira (Springer International Publishing, Cham, 2020) str. 451–464.
https:/​/​doi.org/​10.1007/​978-3-030-50433-5_35

[25] T. Jones in S. Benjamin, Kvantna znanost in tehnologija 5, 034012 (2020).
https: / / doi.org/ 10.1088 / 2058-9565 / ab8506

[26] Z.-Y. Chen in drugi, Science Bulletin 63, str. 964–971 (2018).
https: / / doi.org/ 10.1016 / j.scib.2018.06.007

[27] H. Bian, J. Huang, R. Dong, Y. Guo in X. Wang, v Algorithms and Architectures for Parallel Processing, uredil M. Qiu (Springer International Publishing, 2020) str. 111–125.
https:/​/​doi.org/​10.1007/​978-3-030-60239-0_8

[28] I. Meyerov, A. Liniov, M. Ivanchenko in S. Denisov, Simulacija kvantne dinamike: razvoj algoritmov v kontekstu hpc (2020), arXiv:2005.04681 [quant-ph].
arXiv: 2005.04681

[29] AA Moueddene, N. Khammassi, K. Bertels in CG Almudever, Realistična simulacija kvantnega računanja z uporabo enotnih in merilnih kanalov (2020),.
https: / / doi.org/ 10.1103 / PhysRevA.102.052608

[30] Z. Wang in drugi, Simulator kvantnega vezja in njegove aplikacije na superračunalniku sunway taihulight (2020).
https: / / doi.org/ 10.1038 / s41598-020-79777-y

[31] JH Nielsen, M. Astafev, WH Nielsen, D. Vogel, lakhotiaharshit, A. Johnson, A. Hardal, Akshita, sohail chatoor, F. Bonabi, Liang, G. Ungaretti, S. Pauka, T. Morgan, Adriaan, P . Eendebak, B. Nijholt, qSaevar, P. Eendebak, S. Droege, Samantha, J. Darulova, R. van Gulik, N. Pearson, ThorvaldLarsen in A. Corna, Qcodes/​qcodes: Qcodes 0.43.0 (2024 ).
https: / / doi.org/ 10.5281 / zenodo.10459033

[32] M. Rol, C. Dickel, S.Asaad, N. Langford, C. Bultink, R. Sagastizabal, N. Langford, G. de Lange, X. Fu, S. de Jong, F. Luthi in W. Vlothuizen , DiCarloLab-Delft/​PycQED_py3: Začetna javna izdaja (2016).
https: / / doi.org/ 10.5281 / zenodo.160327

[33] Keysight, Labber, https://​/​www.keysight.com/​us/​en/​lib/​software-detail/​instrument-firmware-software/​labber-3113052.html (2022).
https://​/​www.keysight.com/​us/​en/​lib/​software-detail/​instrument-firmware-software/​labber-3113052.html

[34] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, a.-M. . jaz, . Diego Garcí, A. Garcia-Saez, JI Latorre in S. Carrazza, Kvantna znanost in tehnologija 7, 015018 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac39f5

[35] S. Efthymiou, M. Lazzarin, A. Pasquale in S. Carrazza, Quantum 6, 814 (2022).
https:/​/​doi.org/​10.22331/​q-2022-09-22-814

[36] S. Carrazza, S. Efthymiou, M. Lazzarin in A. Pasquale, Journal of Physics: Conference Series 2438, 012148 (2023).
https:/​/​doi.org/​10.1088/​1742-6596/​2438/​1/​012148

[37] S. Efthymiou et al., qiboteam/​qibo: Qibo 0.1.12 (2023a).
https: / / doi.org/ 10.5281 / zenodo.7736837

[38] S. Efthymiou et al., qiboteam/​qibolab: Qibolab 0.0.2 (2023b).
https: / / doi.org/ 10.5281 / zenodo.7748527

[39] J. Preskill, (2018a).
http://​/​theory.caltech.edu/​~preskill/​ph219/​chap3_15.pdf

[40] A. He, B. Nachman, WA de Jong in CW Bauer, Phys. Rev. A 102, 012426 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.102.012426

[41] A. Sopena, MH Gordon, G. Sierra in E. López, Kvantna znanost in tehnologija 6, 045003 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac0e7a

[42] E. van den Berg, ZK Minev in K. Temme, Physical Review A 105, 10.1103/​physreva.105.032620 (2022).
https: / / doi.org/ 10.1103 / physreva.105.032620

[43] D. Coppersmith, Približna Fourierjeva transformacija, uporabna pri kvantnem faktoriziranju (2002a).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv: kvant-ph / 0201067

[44] A. Peruzzo in drugi, Nature Communications 5, str. 4213 (2014).
https: / / doi.org/ 10.1038 / ncomms5213

[45] A. Garcia-Saez in JI Latorre, Obravnava težkih klasičnih problemov z adiabatsko podprtimi variacijskimi kvantnimi lastnimi rešitelji (2018).
https://​/​doi.org/​10.48550/​arXiv.1806.02287

[46] E. Farhi, J. Goldstone in S. Gutmann, Algoritem kvantne približne optimizacije (2014).
https://​/​doi.org/​10.48550/​arXiv.1411.4028

[47] AB Magann, KM Rudinger, MD Grace in M. Sarovar, Physical Review Letters 129, 10.1103/​physrevlett.129.250502 (2022).
https: / / doi.org/ 10.1103 / physrevlett.129.250502

[48] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, DM Grabowska in S. Carrazza, Quantum 6, 777 (2022).
https:/​/​doi.org/​10.22331/​q-2022-08-17-777

[49] LK Grover, Hitri kvantnomehanski algoritem za iskanje po bazi podatkov (1996).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​9605043
arXiv: kvant-ph / 9605043

[50] S. Hadfield, Z. Wang, BO Gorman, E. Rieffel, D. Venturelli in R. Biswas, Algoritmi 12, 34 (2019).
https: / / doi.org/ 10.3390 / a12020034

[51] E. Farhi, J. Goldstone, S. Gutmann in M. Sipser, Kvantno računanje z adiabatno evolucijo (2000).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0001106
arXiv: kvant-ph / 0001106

[52] Qibo: Primeri dokumentacije API-ja, https://​/​qibo.science/​qibo/​stable/​api-reference/​index.html.
https://​/​qibo.science/​qibo/​stable/​api-reference/​index.html

[53] J. Preskill, Quantum 2, 79 (2018b).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[54] TE Oliphant, Vodnik po NumPy (Trelgol, 2006).

[55] DE Rumelhart, GE Hinton in RJ Williams, Nature 323, 533 (1986).
https: / / doi.org/ 10.1038 / 323533a0

[56] SK Lam, A. Pitrou in S. Seibert, v zborniku druge delavnice o infrastrukturi prevajalnika LLVM v HPC (2015), str. 1–6.
https: / / doi.org/ 10.1145 / 2833157.2833162

[57] R. Okuta, Y. Unno, D. Nishino, S. Hido in C. Loomis, v zborniku delavnic o sistemih strojnega učenja (LearningSys) na enaintrideseti letni konferenci o sistemih za obdelavo nevronskih informacij (NIPS) (2017) .
http://​/​learningsys.org/​nips17/​assets/​papers/​paper_16.pdf

[58] Razvojna skupina T. cuQuantum, cuquantum (2023), če uporabljate to programsko opremo, jo navedite kot spodaj.
https: / / doi.org/ 10.5281 / zenodo.7806810

[59] D. Coppersmith, Približna Fourierjeva transformacija, uporabna pri kvantnem faktoriziranju (2002b).
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv: kvant-ph / 0201067

[60] E. Bernstein in U. Vazirani, SIAM Journal on Computing 26, 1411 (1997).
https: / / doi.org/ 10.1137 / S0097539796300921

[61] J. Biamonte in V. Bergholm, Tensor networks in a nutshell (2017).
https://​/​doi.org/​10.48550/​arXiv.1708.00006

[62] X. Yuan, J. Sun, J. Liu, Q. Zhao in Y. Zhou, Physical Review Letters 127, 10.1103/​physrevlett.127.040501 (2021).
https: / / doi.org/ 10.1103 / physrevlett.127.040501

[63] W. Huggins, P. Patil, B. Mitchell, KB Whaley in EM Stoudenmire, Kvantna znanost in tehnologija 4, 024001 (2019).
https: / / doi.org/ 10.1088 / 2058-9565 / aaea94

[64] R. Orús, Anali fizike 349, 117 (2014).
https: / / doi.org/ 10.1016 / j.aop.2014.06.013

[65] J. Biamonte, Predavanja o kvantnih tenzorskih omrežjih (2020).
https://​/​doi.org/​10.48550/​arXiv.1912.10049

[66] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas, S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen, J. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, CM Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M . Harrigan, M. Hartmann, A. Ho, MR Hoffmann, T. Huang, T. Humble, S. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, JR McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen , M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, MY Niu, E. Ostby, A. Petukhov, J. Platt, C. Quintana, EG Rieffel, P. Roushan, N. Rubin , D. Sank, KJ Satzinger, V. Smelyanskiy, KJ Sung, M. Trevithick, A. Vainsencher, B. Villalonga, T. White, ZJ Yao, P. Yeh, A. Zalcman, H. Neven in J. Martinis , Nature 574, 505–510 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[67] YY Gao, MA Rol, S. Touzard in C. Wang, PRX Quantum 2, 040202 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.040202

[68] D. Leibfried, R. Blatt, C. Monroe in D. Wineland, Rev. Mod. Fiz. 75, 281 (2003).
https: / / doi.org/ 10.1103 / RevModPhys.75.281

[69] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond in C. Jurczak, Quantum 4, 327 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-21-327

[70] J. Koch, TM Yu, J. Gambetta, AA Houck, DI Schuster, J. Majer, A. Blais, MH Devoret, SM Girvin in RJ Schoelkopf, Physical Review A 76, 10.1103/​physreva.76.042319 (2007).
https: / / doi.org/ 10.1103 / physreva.76.042319

[71] BD Josephson, Phys. Lett. 1, 251 (1962).
https:/​/​doi.org/​10.1016/​0031-9163(62)91369-0

[72] T. Alexander, N. Kanazawa, DJ Egger, L. Capelluto, CJ Wood, A. Javadi-Abhari in D. C McKay, Quantum Science and Technology 5, 044006 (2020).
https: / / doi.org/ 10.1088 / 2058-9565 / aba404

[73] H. Silvério, S. Grijalva, C. Dalyac, L. Leclerc, PJ Karalekas, N. Shammah, M. Beji, L.-P. Henry in L. Henriet, Quantum 6, 629 (2022).
https:/​/​doi.org/​10.22331/​q-2022-01-24-629

[74] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​labone-q (2023a).
https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​labone-q

[75] L. Ella, L. Leandro, O. Wertheim, Y. Romach, R. Szmuk, Y. Knol, N. Ofek, I. Sivan in Y. Cohen, Kvantno-klasična obdelava in primerjalna analiza na ravni impulzov (2023 ).
https://​/​doi.org/​10.48550/​arXiv.2303.03816

[76] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​ (2023a).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​

[77] M. Naghiloo, Uvod v eksperimentalno kvantno merjenje s superprevodnimi kubiti (2019).
https://​/​doi.org/​10.48550/​arXiv.1904.09291

[78] A. Pasquale et al., qiboteam/​qibocal: Qibocal 0.0.1 (2023a).
https: / / doi.org/ 10.5281 / zenodo.7662185

[79] A. Pasquale, S. Efthymiou, S. Ramos-Calderer, J. Wilkens, I. Roth in S. Carrazza, Na poti k odprtokodnemu ogrodju za izvajanje kvantne kalibracije in karakterizacije (2023b).
https://​/​doi.org/​10.48550/​arXiv.2303.10397

[80] M. Kliesch in I. Roth, PRX Quantum 2, 010201 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.010201

[81] J. Emerson, R. Alicki in K. Zyczkowski, J. Opt. B 7, S347 (2005).
https:/​/​doi.org/​10.1088/​1464-4266/​7/​10/​021

[82] E. Knill, D. Leibfried, R. Reichle, J. Britton, RB Blakestad, JD Jost, C. Langer, R. Ozeri, S. Seidelin in DJ Wineland, Physical Review A 77, 10.1103/​physreva.77.012307 ( 2008).
https: / / doi.org/ 10.1103 / physreva.77.012307

[83] B. Lévi, CC López, J. Emerson in DG Cory, Phys. Rev. A 75, 022314 (2007).
https: / / doi.org/ 10.1103 / PhysRevA.75.022314

[84] C. Dankert, R. Cleve, J. Emerson in E. Livine, Phys. Rev. A 80, 012304 (2009).
https: / / doi.org/ 10.1103 / PhysRevA.80.012304

[85] J. Helsen, I. Roth, E. Onorati, AH Werner in J. Eisert, arXiv:2010.07974 3, 020357 (2022).
https: / / doi.org/ 10.1103 / PRXQuantum.3.020357
arXiv: 2010.07974

[86] AP et al, V pripravi (2023).

[87] F. Motzoi, JM Gambetta, P. Rebentrost in FK Wilhelm, Phys. Rev. Lett. 103, 110501 (2009).
https: / / doi.org/ 10.1103 / PhysRevLett.103.110501

[88] J. Heinsoo, CK Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J.-C. Besse, A. Potočnik, A. Wallraff in C. Eichler, Phys. Rev. Appl. 10, 034040 (2018).
https: / / doi.org/ 10.1103 / PhysRevApplied.10.034040

[89] Y. Xu, G. Huang, J. Balewski, A. Morvan, K. Nowrouzi, DI Santiago, RK Naik, B. Mitchell in I. Siddiqi, ACM Transactions on Quantum Computing 4, 10.1145/3529397 (2022).
https: / / doi.org/ 10.1145 / 3529397

[90] J. Kelly, P. O'Malley, M. Neeley, H. Neven in JM Martinis, Fizična kalibracija kubitov na usmerjenem acikličnem grafu (2018).
https://​/​doi.org/​10.48550/​arXiv.1803.03226

[91] Qibolab: Ustvarjanje platforme, https://​/​qibo.science/​qibolab/​stable/​tutorials/​lab.html.
https://​/​qibo.science/​qibolab/​stable/​tutorials/​lab.html

[92] Qibolab: Serializacija platforme, https:/​/​qibo.science/​qibolab/​stable/​api-reference/​qibolab.html#module-qibolab.serialize.
https://​/​qibo.science/​qibolab/​stable/​api-reference/​qibolab.html#module-qibolab.serialize

[93] Qibolab: Formati rezultatov, https:/​/​qibo.science/​qibolab/​stable/​main-documentation/​qibolab.html#results.
https://​/​qibo.science/​qibolab/​stable/​main-documentation/​qibolab.html#results

[94] Qblox, https://​/​www.qblox.com.
https://www.qblox.com

[95] QuantumMachines, https://​/​www.quantum-machines.co/​.
https://​/​www.quantum-machines.co/​

[96] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​qccs (2023b).
https://​/​www.zhinst.com/​others/​en/​quantum-computing-systems/​qccs

[97] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton, C. Bradford, S. Uemura, S. Zorzetti, S. Montella, G. Cancelo, S. Sussman, A. Houck, S. Saxena, H. Arnaldi, A. Agrawal, H. Zhang, C. Ding in DI Schuster, Pregled znanstvenih instrumentov 93, 10.1063/5.0076249 (2022).
https: / / doi.org/ 10.1063 / 5.0076249

[98] R. Carobene et al., qiboteam/​qibosoq: Qibosoq 0.0.3 (2023).
https: / / doi.org/ 10.5281 / zenodo.8126172

[99] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​getting_started/​product_overview.html#cluster.
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​getting_started/​product_overview.html#cluster

[100] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qrm_rf.html (2023b).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qrm_rf.html

[101] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm_rf.html (2023c).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm_rf.html

[102] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm.html (2023d).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​qcm.html

[103] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​synchronization.html#synq.
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​cluster/​synchronization.html#synq

[104] Qcodes, https://​/​qcodes.github.io/​Qcodes/​ (2023).
https://​/​qcodes.github.io/​Qcodes/​

[105] Qblox, https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​tutorials/​q1asm_tutorials.html (2023e).
https://​/​qblox-qblox-instruments.readthedocs-hosted.com/​en/​master/​tutorials/​q1asm_tutorials.html

[106] OPX+, https://​/​www.quantum-machines.co/​products/​opx/​.
https://​/​www.quantum-machines.co/​products/​opx/​

[107] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​shfqc-qubit-controller (2023c).
https://​/​www.zhinst.com/​others/​en/​products/​shfqc-qubit-controller

[108] J. Herrmann, C. Hellings, S. Lazar, F. Pfäffli, F. Haupt, T. Thiele, DC Zanuz, GJ Norris, F. Heer, C. Eichler in A. Wallraff, Frequency up-conversion sheme za krmiljenje superprevodni kubiti (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.02513

[109] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​hdawg-arbitrary-waveform-generator (2023d).
https://​/​www.zhinst.com/​others/​en/​products/​hdawg-arbitrary-waveform-generator

[110] ZurichInstruments, https://​/​www.zhinst.com/​others/​en/​products/​pqsc-programmable-quantum-system-controller (2023e).
https://​/​www.zhinst.com/​others/​en/​products/​pqsc-programmable-quantum-system-controller

[111] Xilinx-(AMD), specifikacije Rfsoc 4×2, https://​/​www.xilinx.com/​support/​university/​xup-boards/​RFSoC4x2.html (2022a).
https://​/​www.xilinx.com/​support/​university/​xup-boards/​RFSoC4x2.html

[112] Xilinx-(AMD), specifikacije Zcu111, https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu111.html (2022b).
https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu111.html

[113] Xilinx-(AMD), specifikacije Zcu216, https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu216.html (2022c).
https://​/​www.xilinx.com/​products/​boards-and-kits/​zcu216.html

[114] PSV Naidu, Moderna digitalna obdelava signalov (Alpha Science International, 2003).

[115] A. Barenco, CH Bennett, R. Cleve, DP DiVincenzo, N. Margolus, P. Shor, T. Sleator, JA Smolin in H. Weinfurter, Physical Review A 52, 3457 (1995).
https: / / doi.org/ 10.1103 / physreva.52.3457

[116] T. Ito, N. Kakimura, N. Kamiyama, Y. Kobayashi in Y. Okamoto, Algoritemska teorija usmerjanja kubitov (2023).
https://​/​doi.org/​10.48550/​arXiv.2305.02059

[117] S. Heng, D. Kim, S. Heng in Y. Han leta 2022 na 37. mednarodni tehnični konferenci o vezjih/sistemih, računalnikih in komunikacijah (ITC-CSCC) (2022), str. 1–3.
https://​/​doi.org/​10.1109/​ITC-CSCC55581.2022.9894863

[118] P. Zhu, S. Zheng, L. Wei, C. Xueyun, Z. Guan in S. Feng, Kvantna obdelava informacij 21 (2022).
https:/​/​doi.org/​10.1007/​s11128-022-03698-0

[119] T. Itoko, R. Raymond, T. Imamichi in A. Matsuo, Optimizacija preslikave kvantnega vezja z uporabo transformacije vrat in komutacije (2019).
https://​/​doi.org/​10.48550/​arXiv.1907.02686

[120] G. Vidal in CM Dawson, Physical Review A 69, 10.1103/​physreva.69.010301 (2004).
https: / / doi.org/ 10.1103 / physreva.69.010301

[121] T. Fösel, MY Niu, F. Marquardt in L. Li, Kvantna optimizacija vezja z globokim okrepljenim učenjem (2021).
https://​/​doi.org/​10.48550/​arXiv.2103.07585

[122] G. Li, Y. Ding in Y. Xie, Reševanje problema preslikave kubitov za kvantne naprave iz obdobja nisq (2019).
https://​/​doi.org/​10.48550/​arXiv.1809.02573

[123] Y. Kharkov, A. Ivanova, E. Mikhantiev in A. Kotelnikov, Arline benchmarks: Automated benchmarking platform for quantum compilers (2022).
https://​/​doi.org/​10.48550/​arXiv.2202.14025

[124] Qibolab merila uspešnosti, https://​/​github.com/​qiboteam/​qibolab-benchmarks/​tree/​v0.1.0.
https://​/​github.com/​qiboteam/​qibolab-benchmarks/​tree/​v0.1.0

[125] JF Clauser, MA Horne, A. Shimin in RA Holt, Phys. Rev. Lett. 23, 880 (1969).
https: / / doi.org/ 10.1103 / PhysRevLett.23.880

[126] JS Bell, Physics Physique Fizika 1, 195 (1964).
https: / / doi.org/ 10.1103 / PhysicsPhysiqueFizika.1.195

[127] M. Schuld, I. Sinayskiy in F. Petruccione, Sodobna fizika 56, 172 (2014).
https: / / doi.org/ 10.1080 / 00107514.2014.964942

[128] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe in S. Lloyd, Nature 549, 195 (2017).
https: / / doi.org/ 10.1038 / nature23474

[129] K. Mitarai, M. Negoro, M. Kitagawa in K. Fujii, Physical Review A 98, 10.1103/physreva.98.032309 (2018).
https: / / doi.org/ 10.1103 / physreva.98.032309

[130] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio in P. J. Coles, Nature Reviews Physics 3, 625 (2021) ).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[131] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio in PJ Coles, Nature Communications 12, 10.1038/​s41467-021-27045-6 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-27045-6

[132] A. Pérez-Salinas, J. Cruz-Martinez, AA Alhajri in S. Carrazza, Physical Review D 103, 10.1103/​physrevd.103.034027 (2021).
https: / / doi.org/ 10.1103 / physrevd.103.034027

[133] M. Robbiati, JM Cruz-Martinez in S. Carrazza, Določanje funkcij gostote verjetnosti z adiabatnim kvantnim računalništvom (2023).
https://​/​doi.org/​10.48550/​arXiv.2303.11346

[134] S. Bordoni, D. Stanev, T. Santantonio in S. Giagu, delci 6, 297 (2023).
https://​/​doi.org/​10.3390/​particles6010016

[135] M. Robbiati, S. Efthymiou, A. Pasquale in S. Carrazza, Kvantni analitični adamski spust skozi pravilo premika parametrov z uporabo qibo (2022).
https://​/​doi.org/​10.48550/​arXiv.2210.10787

[136] RD Ball, S. Carrazza, J. Cruz-Martinez, LD Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, JI Latorre, ER Nocera, RL Pearson, J. Rojo, R. Stegeman, C Schwan, M. Ubiali, C. Voisey in M. Wilson, The European Physical Journal C 82, 10.1140/​epjc/​s10052-022-10328-7 (2022).
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10328-7

[137] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster in JI Latorre, Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[138] DP Kingma in J. Ba, Adam: Metoda za stohastično optimizacijo (2017).
https://​/​doi.org/​10.48550/​arXiv.1412.6980

[139] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac in N. Killoran, Physical Review A 99, 10.1103/physreva.99.032331 (2019).
https: / / doi.org/ 10.1103 / physreva.99.032331

Navedel

[1] Jorge J. Martínez de Lejarza, Leandro Cieri, Michele Grossi, Sofia Vallecorsa in Germán Rodrigo, »Loop Feynmanova integracija na kvantnem računalniku«, arXiv: 2401.03023, (2024).

[2] Alessandro D'Elia, Boulos Alfakes, Anas Alkhazaleh, Leonardo Banchi, Matteo Beretta, Stefano Carrazza, Fabio Chiarello, Daniele Di Gioacchino, Andrea Giachero, Felix Henrich, Alex Stephane Piedjou Komnang, Carlo Ligi, Giovanni Maccarrone, Massimo Macucci, Emanuele Palumbo, Andrea Pasquale, Luca Piersanti, Florent Ravaux, Alessio Rettaroli, Matteo Robbiati, Simone Tocci in Claudio Gatti, »Karakterizacija transmonskega kubita v 3D votlini za kvantno strojno učenje in štetje fotonov«, arXiv: 2402.04322, (2024).

[3] Chunyang Ding, Martin Di Federico, Michael Hatridge, Andrew Houck, Sebastien Leger, Jeronimo Martinez, Connie Miao, David I. Schuster, Leandro Stefanazzi, Chris Stoughton, Sara Sussman, Ken Treptow, Sho Uemura, Neal Wilcer, Helin Zhang , Chao Zhou in Gustavo Cancelo, "Eksperimentalni napredek s QICK (Quantum Instrumentation Control Kit) za superprevodno kvantno strojno opremo", arXiv: 2311.17171, (2023).

[4] Steve Abel, Juan Carlos Criado in Michael Spannowsky, "Usposabljanje nevronskih mrež z univerzalnim adiabatnim kvantnim računalništvom", arXiv: 2308.13028, (2023).

[5] Matteo Robbiati, Alejandro Sopena, Andrea Papaluca in Stefano Carrazza, »Zmanjšanje napak v realnem času za variacijsko optimizacijo na kvantni strojni opremi«, arXiv: 2311.05680, (2023).

[6] Edoardo Pedicillo, Andrea Pasquale in Stefano Carrazza, "Primerjalna analiza modelov strojnega učenja za kvantno klasifikacijo stanj", arXiv: 2309.07679, (2023).

Zgornji citati so iz SAO / NASA ADS (zadnjič posodobljeno 2024-02-16 14:18:42). Seznam je morda nepopoln, saj vsi založniki ne dajejo ustreznih in popolnih podatkov o citiranju.

On Crossref je navedel storitev ni bilo najdenih podatkov o navajanju del (zadnji poskus 2024-02-16 14:18:40).

Časovni žig:

Več od Quantum Journal