ہم آہنگی بڑھا ہوا تغیراتی کوانٹم اسپن ایگنسولور

ہم آہنگی بڑھا ہوا تغیراتی کوانٹم اسپن ایگنسولور

Symmetry enhanced variational quantum spin eigensolver PlatoBlockchain Data Intelligence. Vertical Search. Ai.

چوفان لیو1, Xusheng Xu2, Man-Hong Yung2,3,4, and Abolfazl Bayat1

1انسٹی ٹیوٹ آف فنڈامینٹل اینڈ فرنٹیئر سائنسز، یونیورسٹی آف الیکٹرانک سائنس اینڈ ٹیکنالوجی آف چائنا، چینگڈو 610051، چین
2Central Research Institute, 2012 Labs, Huawei Technologies
3Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
4Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

اس کاغذ کو دلچسپ لگتا ہے یا اس پر بات کرنا چاہتے ہیں؟ SciRate پر تبصرہ کریں یا چھوڑیں۔.

خلاصہ

The variational quantum-classical algorithms are the most promising approach for achieving quantum advantage on near-term quantum simulators. Among these methods, the variational quantum eigensolver has attracted a lot of attention in recent years. While it is very effective for simulating the ground state of many-body systems, its generalization to excited states becomes very resource demanding. Here, we show that this issue can significantly be improved by exploiting the symmetries of the Hamiltonian. The improvement is even more effective for higher energy eigenstates. We introduce two methods for incorporating the symmetries. In the first approach, called hardware symmetry preserving, all the symmetries are included in the design of the circuit. In the second approach, the cost function is updated to include the symmetries. The hardware symmetry preserving approach indeed outperforms the second approach. However, integrating all symmetries in the design of the circuit could be extremely challenging. Therefore, we introduce hybrid symmetry preserving method in which symmetries are divided between the circuit and the classical cost function. This allows to harness the advantage of symmetries while preventing sophisticated circuit design.

Quantum simulators are rapidly emerging in various physical platforms. However, the current noisy Intermediate-Scale Quantum (NISQ) simulators suffer from imperfect initialization, noisy operation and faulty readout. Variational quantum algorithms have been proposed as the most promising approach for achieving quantum advantage on NISQ devices. In these algorithms, the complexity is divided between a parameterized quantum simulator and a classical optimizer for optimizing the parameters of the circuit. Therefore, in variational quantum algorithms we deal with both quantum and classical resources, for both of which we have to be efficient. Here, we focus on Variational Quantum Eigensolver (VQE) algorithm, which has been designed to variationally generate the low-energy eigenstates of a many-body system on a quantum simulator. We exploit symmetries of the system to improve resource efficiency in a VQE algorithm. Two methods are investigated: (i) incorporating the symmetries in the design of the circuit that naturally generates quantum states with desired symmetry; and (ii) adding extra terms to the cost function to penalize the quantum states without the relevant symmetry. Through extensive analysis, we show that the first approach is far more resource efficient, with respect to both quantum and classical resources. In realistic scenarios, one may need to use a hybrid scheme in which some symmetries are incorporated in the hardware and some are targeted through the cost function.

► BibTeX ڈیٹا

► حوالہ جات

ہے [1] کرسچن کوکیل، کرسٹین مائیر، ریک وین بیجن، ٹِف برائجز، منوج کے جوشی، پیٹر جورکوک، کرسٹین اے مشک، پیٹرو سلوی، رینر بلاٹ، کرسچن ایف روس، وغیرہ۔ "لاٹیس ماڈلز کی خود سے تصدیق کرنے والا تغیراتی کوانٹم سمولیشن"۔ فطرت 569، 355–360 (2019)۔
https:/​/​doi.org/​10.1038/​s41586-019-1177-4

ہے [2] ایلان اسپورو گوزک، انتھونی ڈی ڈوٹوئی، پیٹر جے لو، اور مارٹن ہیڈ گورڈن۔ "سالماتی توانائیوں کی نقلی کوانٹم کمپیوٹیشن"۔ سائنس 309، 1704–1707 (2005)۔
https://​doi.org/​10.1126/​science.1113479

ہے [3] Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. “Molecular electronic-structure theory”. John Wiley & Sons, Ltd. (2013).
https://​doi.org/​10.1002/​9781119019572

ہے [4] رومن اورس، سیموئیل میوگل اور اینریک لیزاسو۔ "کوانٹم کمپیوٹنگ برائے فنانس: جائزہ اور امکانات"۔ طبیعیات 4، 100028 (2019) میں جائزے
https://​/​doi.org/​10.1016/​j.revip.2019.100028

ہے [5] Patrick Rebentrost, Brajesh Gupt, and Thomas R Bromley. “Quantum computational finance: Monte carlo pricing of financial derivatives”. Phys. Rev. A 98, 022321 (2018).
https://​/​doi.org/​10.1103/​physreva.98.022321

ہے [6] ڈینیئل جے ایگر، کلاڈیو گیمبیلا، جیکب ماریسیک، سکاٹ میک فیڈن، مارٹن میویسن، روڈی ریمنڈ، اینڈریا سیمونیٹو، اسٹیفن ویرنر، اور ایلینا ینڈورین۔ "کوانٹم کمپیوٹنگ برائے فنانس: اسٹیٹ آف دی آرٹ اور مستقبل کے امکانات"۔ کوانٹم انجینئرنگ (2020) پر IEEE لین دین۔
https://​doi.org/​10.1109/​tqe.2020.3030314

ہے [7] Pranjal Bordia, Henrik Lüschen, Sebastian Scherg, Sarang Gopalakrishnan, Michael Knap, Ulrich Schneider, and Immanuel Bloch. “Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems”. Phys. Rev. X 7, 041047 (2017).
https://​/​doi.org/​10.1103/​physrevx.7.041047

ہے [8] Michael Schreiber, Sean S Hodgman, Pranjal Bordia, Henrik P Lüschen, Mark H Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, and Immanuel Bloch. “Observation of many-body localization of interacting fermions in a quasirandom optical lattice”. Science 349, 842–845 (2015).
https://​doi.org/​10.1126/​science.aaa7432

ہے [9] کرسچن گراس اور ایمانوئل بلوچ۔ "آپٹیکل جالیوں میں الٹرا کولڈ ایٹموں کے ساتھ کوانٹم سمولیشنز"۔ سائنس 357، 995–1001 (2017)۔
https://​doi.org/​10.1126/​science.aal3837

ہے [10] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P Lanyon, Peter Love, Ryan Babbush, et al. “Quantum chemistry calculations on a trapped-ion quantum simulator”. Phys. Rev. X 8, 031022 (2018).
https://​/​doi.org/​10.1103/​PhysRevX.8.031022

ہے [11] Ben P Lanyon, Cornelius Hempel, Daniel Nigg, Markus Müller, Rene Gerritsma, F Zähringer, Philipp Schindler, Julio T Barreiro, Markus Rambach, Gerhard Kirchmair, et al. “Universal digital quantum simulation with trapped ions”. Science 334, 57–61 (2011).
https://​doi.org/​10.1126/​science.1208001

ہے [12] Alán Aspuru-Guzik and Philip Walther. “Photonic quantum simulators”. Nat. Phys. 8, 285–291 (2012).
https://​doi.org/​10.1038/​nphys2253

ہے [13] Jianwei Wang, Fabio Sciarrino, Anthony Laing, and Mark G Thompson. “Integrated photonic quantum technologies”. Nat. Photonics 14, 273–284 (2020).
https:/​/​doi.org/​10.1038/​s41566-019-0532-1

ہے [14] Toivo Hensgens, Takafumi Fujita, Laurens Janssen, Xiao Li, CJ Van Diepen, Christian Reichl, Werner Wegscheider, S Das Sarma, and Lieven MK Vandersypen. “Quantum simulation of a fermi–hubbard model using a semiconductor quantum dot array”. Nature 548, 70–73 (2017).
https://​doi.org/​10.1038/​nature23022

ہے [15] J Salfi, JA Mol, R Rahman, G Klimeck, MY Simmons, LCL Hollenberg, and S Rogge. “Quantum simulation of the hubbard model with dopant atoms in silicon”. Nat. Commun. 7, 1–6 (2016).
https://​doi.org/​10.1038/​ncomms11342

ہے [16] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B Buckley, David A Buell, et al. “Hartree-fock on a superconducting qubit quantum computer”. Science 369, 1084–1089 (2020).
https://​/​doi.org/​10.1126/​science.abb9811

ہے [17] Rami Barends, Alireza Shabani, Lucas Lamata, Julian Kelly, Antonio Mezzacapo, Urtzi Las Heras, Ryan Babbush, Austin G Fowler, Brooks Campbell, Yu Chen, et al. “Digitized adiabatic quantum computing with a superconducting circuit”. Nature 534, 222–226 (2016).
https://​doi.org/​10.1038/​nature17658

ہے [18] جان پریسکل۔ "نسک دور میں کوانٹم کمپیوٹنگ اور اس سے آگے"۔ کوانٹم 2، 79 (2018)۔
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

ہے [19] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. “Noisy intermediate-scale quantum algorithms”. Rev. Mod. Phys. 94 (2022).
https://​/​doi.org/​10.1103/​revmodphys.94.015004

ہے [20] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. “A variational eigenvalue solver on a photonic quantum processor”. Nat. Commun. 5, 1–7 (2014).
https://​doi.org/​10.1038/​ncomms5213

ہے [21] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. “Variational quantum algorithms”. Nat. Rev. Phys.Pages 1–20 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

ہے [22] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. “The theory of variational hybrid quantum-classical algorithms”. New J. Phys. 18, 023023 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

ہے [23] Xiao Yuan، Suguru Endo، Qi Zhao، Ying Li، اور Simon C Benjamin۔ "متغیر کوانٹم سمولیشن کا نظریہ"۔ کوانٹم 3، 191 (2019)۔
https:/​/​doi.org/​10.22331/​q-2019-10-07-191

ہے [24] Tao Xin, Xinfang Nie, Xiangyu Kong, Jingwei Wen, Dawei Lu, and Jun Li. “Quantum pure state tomography via variational hybrid quantum-classical method”. Phys. Rev. Applied 13, 024013 (2020).
https://​/​doi.org/​10.1103/​PhysRevApplied.13.024013

ہے [25] جیکب بیامونٹے، پیٹر وٹیک، نکولا پینکوٹی، پیٹرک ریبینٹروسٹ، ناتھن ویبی، اور سیٹھ لائیڈ۔ "کوانٹم مشین لرننگ"۔ فطرت 549، 195–202 (2017)۔
https://​doi.org/​10.1038/​nature23474

ہے [26] Srinivasan Arunachalam and Ronald de Wolf. “A survey of quantum learning theory” (2017). arXiv:1701.06806.
آر ایکس سی: 1701.06806

ہے [27] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, and Leonard Wossnig. “Quantum machine learning: a classical perspective”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 20170551 (2018).
https://​doi.org/​10.1098/​rspa.2017.0551

ہے [28] ویدرن ڈنجکو اور ہنس جے بریگل۔ "کوانٹم ڈومین میں مشین لرننگ اور مصنوعی ذہانت: حالیہ پیشرفت کا جائزہ"۔ طبیعیات میں پیش رفت پر رپورٹس 81، 074001 (2018)۔
https://​doi.org/​10.1088/​1361-6633/​aab406

ہے [29] ایڈورڈ فرہی اور ہارٹمٹ نیوین۔ "قریب مدتی پروسیسرز پر کوانٹم نیورل نیٹ ورکس کے ساتھ درجہ بندی" (2018)۔ arXiv:1802.06002۔
آر ایکس سی: 1802.06002

ہے [30] Maria Schuld and Nathan Killoran. “Quantum machine learning in feature hilbert spaces”. Phys. Rev. Lett. 122, 040504 (2019).
https://​/​doi.org/​10.1103/​physrevlett.122.040504

ہے [31] ایڈورڈ فرہی، جیفری گولڈ اسٹون، اور سیم گٹ مین۔ "ایک کوانٹم تخمینی اصلاح الگورتھم" (2014)۔ arXiv:1411.4028۔
آر ایکس سی: 1411.4028

ہے [32] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. “Obstacles to variational quantum optimization from symmetry protection”. Phys. Rev. Lett. 125, 260505 (2020).
https://​/​doi.org/​10.1103/​physrevlett.125.260505

ہے [33] Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J Coles, and Andrew Sornborger. “Variational fast forwarding for quantum simulation beyond the coherence time”. Npj Quantum Inf. 6, 1–10 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-00302-0

ہے [34] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger. “Long-time simulations with high fidelity on quantum hardware” (2021). arXiv:2102.04313.
آر ایکس سی: 2102.04313

ہے [35] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C Benjamin, and Xiao Yuan. “Variational ansatz-based quantum simulation of imaginary time evolution”. Npj Quantum Inf. 5, 1–6 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0187-2

ہے [36] Kentaro Heya, Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. “Subspace variational quantum simulator” (2019). arXiv:1904.08566.
آر ایکس سی: 1904.08566

ہے [37] Joonsuk Huh, Sarah Mostame, Takatoshi Fujita, Man-Hong Yung, and Alán Aspuru-Guzik. “Linear-algebraic bath transformation for simulating complex open quantum systems”. New J. Phys. 16, 123008 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​12/​123008

ہے [38] Zixuan Hu, Rongxin Xia, and Sabre Kais. “A quantum algorithm for evolving open quantum dynamics on quantum computing devices”. Sci. Rep. 10, 1–9 (2020).
https://​/​doi.org/​10.1038/​s41598-020-60321-x

ہے [39] Suguru Endo, Jinzhao Sun, Ying Li, Simon C Benjamin, and Xiao Yuan. “Variational quantum simulation of general processes”. Phys. Rev. Lett. 125, 010501 (2020).
https://​/​doi.org/​10.1103/​physrevlett.125.010501

ہے [40] Tobias Haug and Kishor Bharti. “Generalized quantum assisted simulator” (2020). arXiv:2011.14737.
آر ایکس سی: 2011.14737

ہے [41] Johannes Jakob Meyer, Johannes Borregaard, and Jens Eisert. “A variational toolbox for quantum multi-parameter estimation”. Npj Quantum Inf. 7, 1–5 (2021).
https://​doi.org/​10.1038/​s41534-021-00425-y

ہے [42] Johannes Jakob Meyer. “Fisher information in noisy intermediate-scale quantum applications”. Quantum 5, 539 (2021).
https:/​/​doi.org/​10.22331/​q-2021-09-09-539

ہے [43] Jacob L. Beckey, M. Cerezo, Akira Sone, and Patrick J. Coles. “Variational quantum algorithm for estimating the quantum fisher information”. Phys. Rev. Res. 4 (2022).
https://​/​doi.org/​10.1103/​physrevresearch.4.013083

ہے [44] Raphael Kaubruegger, Pietro Silvi, Christian Kokail, Rick van Bijnen, Ana Maria Rey, Jun Ye, Adam M Kaufman, and Peter Zoller. “Variational spin-squeezing algorithms on programmable quantum sensors”. Phys. Rev. Lett. 123, 260505 (2019).
https://​/​doi.org/​10.1103/​physrevlett.123.260505

ہے [45] Bálint Koczor, Suguru Endo, Tyson Jones, Yuichiro Matsuzaki, and Simon C Benjamin. “Variational-state quantum metrology”. New J. Phys. 22, 083038 (2020).
https://​doi.org/​10.1088/​1367-2630/​ab965e

ہے [46] Ziqi Ma, Pranav Gokhale, Tian-Xing Zheng, Sisi Zhou, Xiaofei Yu, Liang Jiang, Peter Maurer, and Frederic T. Chong. “Adaptive circuit learning for quantum metrology”. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE (2021).

ہے [47] Tobias Haug and M. S. Kim. “Natural parametrized quantum circuit”. Phys. Rev. A 106, 052611 (2022).
https://​/​doi.org/​10.1103/​PhysRevA.106.052611

ہے [48] Changsu Cao, Jiaqi Hu, Wengang Zhang, Xusheng Xu, Dechin Chen, Fan Yu, Jun Li, Hanshi Hu, Dingshun Lv, and Man-Hong Yung. “Towards a larger molecular simulation on the quantum computer: Up to 28 qubits systems accelerated by point group symmetry” (2021). arXiv:2109.02110.
آر ایکس سی: 2109.02110

ہے [49] ابھینو کنڈالا، انتونیو میزاکاپو، کرسٹن ٹیمے، مائیکا تکیتا، مارکس برنک، جیری ایم چو، اور جے ایم گیمبیٹا۔ "چھوٹے مالیکیولز اور کوانٹم میگنےٹس کے لیے ہارڈ ویئر کے لیے موثر تغیراتی کوانٹم ایگنسولور"۔ فطرت 549، 242–246 (2017)۔
https://​doi.org/​10.1038/​nature23879

ہے [50] Yunseong Nam, Jwo-Sy Chen, Neal C Pisenti, Kenneth Wright, Conor Delaney, Dmitri Maslov, Kenneth R Brown, Stewart Allen, Jason M Amini, Joel Apisdorf, et al. “Ground-state energy estimation of the water molecule on a trapped-ion quantum computer”. Npj Quantum Inf. 6, 1–6 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-0259-3

ہے [51] Carlos Bravo-Prieto, Josep Lumbreras-Zarapico, Luca Tagliacozzo, and José I. Latorre. “Scaling of variational quantum circuit depth for condensed matter systems”. Quantum 4, 272 (2020).
https:/​/​doi.org/​10.22331/​q-2020-05-28-272

ہے [52] Chufan Lyu, Victor Montenegro, and Abolfazl Bayat. “Accelerated variational algorithms for digital quantum simulation of many-body ground states”. Quantum 4, 324 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-16-324

ہے [53] Alexey Uvarov, Jacob D Biamonte, and Dmitry Yudin. “Variational quantum eigensolver for frustrated quantum systems”. Phys. Rev. B 102, 075104 (2020).
https://​/​doi.org/​10.1103/​physrevb.102.075104

ہے [54] Ken N. Okada, Keita Osaki, Kosuke Mitarai, and Keisuke Fujii. “Identification of topological phases using classically-optimized variational quantum eigensolver” (2022). arXiv:2202.02909.
آر ایکس سی: 2202.02909

ہے [55] Ming-Cheng Chen, Ming Gong, Xiaosi Xu, Xiao Yuan, Jian-Wen Wang, Can Wang, Chong Ying, Jin Lin, Yu Xu, Yulin Wu, et al. “Demonstration of adiabatic variational quantum computing with a superconducting quantum coprocessor”. Phys. Rev. Lett. 125, 180501 (2020).
https://​/​doi.org/​10.1103/​physrevlett.125.180501

ہے [56] Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger, Frank Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends, Sergio Boixo, et al. “Quantum approximate optimization of non-planar graph problems on a planar superconducting processor”. Nat. Phys. 17, 332–336 (2021).
https://​doi.org/​10.1038/​s41567-020-01105-y

ہے [57] Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S Collins, Arinjoy De, Paul W Hess, Harvey B Kaplan, Antonis Kyprianidis, Wen Lin Tan, Christopher Baldwin, et al. “Quantum approximate optimization of the long-range ising model with a trapped-ion quantum simulator”. Proceedings of the National Academy of Sciences 117, 25396–25401 (2020).
https://​doi.org/​10.1073/​pnas.2006373117

ہے [58] Andrew Zhao, Andrew Tranter, William M Kirby, Shu Fay Ung, Akimasa Miyake, and Peter J Love. “Measurement reduction in variational quantum algorithms”. Phys. Rev. A 101, 062322 (2020).
https://​/​doi.org/​10.1103/​physreva.101.062322

ہے [59] Artur F Izmaylov, Tzu-Ching Yen, Robert A Lang, and Vladyslav Verteletskyi. “Unitary partitioning approach to the measurement problem in the variational quantum eigensolver method”. J. Chem. Theory Comput. 16, 190–195 (2019).
https://​/​doi.org/​10.1021/​acs.jctc.9b00791

ہے [60] Vladyslav Verteletskyi, Tzu-Ching Yen, and Artur F Izmaylov. “Measurement optimization in the variational quantum eigensolver using a minimum clique cover”. J. Chem. Phys. 152, 124114 (2020).
https://​doi.org/​10.1063/​1.5141458

ہے [61] Pranav Gokhale, Olivia Angiuli, Yongshan Ding, Kaiwen Gui, Teague Tomesh, Martin Suchara, Margaret Martonosi, and Frederic T. Chong. “$o(n^3)$ measurement cost for variational quantum eigensolver on molecular hamiltonians”. IEEE Transactions on Quantum Engineering 1, 1–24 (2020).
https://​doi.org/​10.1109/​TQE.2020.3035814

ہے [62] Alexis Ralli, Peter J Love, Andrew Tranter, and Peter V Coveney. “Implementation of measurement reduction for the variational quantum eigensolver”. Phys. Rev. Res. 3, 033195 (2021).
https://​/​doi.org/​10.1103/​physrevresearch.3.033195

ہے [63] Barnaby van Straaten and Bálint Koczor. “Measurement cost of metric-aware variational quantum algorithms”. PRX Quantum 2, 030324 (2021).
https://​/​doi.org/​10.1103/​prxquantum.2.030324

ہے [64] ایڈورڈ گرانٹ، لیونارڈ ووسنیگ، میٹیوز اوستازوسکی، اور مارسیلو بینیڈیٹی۔ "پیرامیٹرائزڈ کوانٹم سرکٹس میں بنجر سطح مرتفع کو حل کرنے کے لئے ایک ابتدائی حکمت عملی"۔ کوانٹم 3، 214 (2019)۔
https:/​/​doi.org/​10.22331/​q-2019-12-09-214

ہے [65] Tyler Volkoff and Patrick J Coles. “Large gradients via correlation in random parameterized quantum circuits”. Quantum Sci. Technol. 6, 025008 (2021).
https://​doi.org/​10.1088/​2058-9565/​abd891

ہے [66] جیمز سٹوکس، جوش آئیزاک، ناتھن کلوران، اور جوسیپ کارلیو۔ "کوانٹم قدرتی میلان"۔ کوانٹم 4, 269 (2020)۔
https:/​/​doi.org/​10.22331/​q-2020-05-25-269

ہے [67] Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash. “Learning to optimize variational quantum circuits to solve combinatorial problems”. Proceedings of the AAAI Conference on Artificial Intelligence 34, 2367–2375 (2020).
https://​doi.org/​10.1609/​aaai.v34i03.5616

ہے [68] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. “Optimizing quantum optimization algorithms via faster quantum gradient computation”. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. Pages 1425–1444. Society for Industrial and Applied Mathematics (2019).
https://​doi.org/​10.1137/​1.9781611975482.87

ہے [69] Mateusz Ostaszewski, Lea M. Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran Dunjko. “Reinforcement learning for optimization of variational quantum circuit architectures” (2021). arXiv:2103.16089.
آر ایکس سی: 2103.16089

ہے [70] Mohammad Pirhooshyaran and Tamas Terlaky. “Quantum circuit design search” (2020). arXiv:2012.04046.
آر ایکس سی: 2012.04046

ہے [71] Thomas Fösel، Murphy Yuezhen Niu، Florian Marquardt، اور Li Li. "گہری کمک سیکھنے کے ساتھ کوانٹم سرکٹ کی اصلاح" (2021)۔ arXiv:2103.07585۔
آر ایکس سی: 2103.07585

ہے [72] Arthur G. Rattew, Shaohan Hu, Marco Pistoia, Richard Chen, and Steve Wood. “A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver” (2019). arXiv:1910.09694.
آر ایکس سی: 1910.09694

ہے [73] D. Chivilikhin, A. Samarin, V. Ulyantsev, I. Iorsh, A. R. Oganov, and O. Kyriienko. “Mog-vqe: Multiobjective genetic variational quantum eigensolver” (2020). arXiv:2007.04424.
آر ایکس سی: 2007.04424

ہے [74] Yuhan Huang, Qingyu Li, Xiaokai Hou, Rebing Wu, Man-Hong Yung, Abolfazl Bayat, and Xiaoting Wang. “Robust resource-efficient quantum variational ansatz through an evolutionary algorithm”. Phys. Rev. A 105, 052414 (2022).
https://​/​doi.org/​10.1103/​PhysRevA.105.052414

ہے [75] János K Asbóth, László Oroszlány, and András Pályi. “The su-schrieffer-heeger (ssh) model”. In A Short Course on Topological Insulators. Pages 1–22. Springer (2016).
https:/​/​doi.org/​10.1007/​978-3-319-25607-8

ہے [76] Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. “Subspace-search variational quantum eigensolver for excited states”. Phys. Rev. Res. 1, 033062 (2019).
https://​/​doi.org/​10.1103/​physrevresearch.1.033062

ہے [77] Oscar Higgott, Daochen Wang, and Stephen Brierley. “Variational quantum computation of excited states”. Quantum 3, 156 (2019).
https:/​/​doi.org/​10.22331/​q-2019-07-01-156

ہے [78] Jarrod R McClean, Mollie E Kimchi-Schwartz, Jonathan Carter, and Wibe A De Jong. “Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states”. Phys. Rev. A 95, 042308 (2017).
https://​/​doi.org/​10.1103/​physreva.95.042308

ہے [79] Raffaele Santagati, Jianwei Wang, Antonio A Gentile, Stefano Paesani, Nathan Wiebe, Jarrod R McClean, Sam Morley-Short, Peter J Shadbolt, Damien Bonneau, Joshua W Silverstone, et al. “Witnessing eigenstates for quantum simulation of hamiltonian spectra”. Sci. Adv. 4, eaap9646 (2018).
https://​doi.org/​10.1126/​sciadv.aap9646

ہے [80] Walter Greiner and Berndt Müller. “Quantum mechanics: symmetries”. Springer Science & Business Media. (2012).
https:/​/​doi.org/​10.1007/​978-3-662-00902-4

ہے [81] Roy McWeeny. “Symmetry: An introduction to group theory and its applications”. Courier Corporation. (2002).

ہے [82] Ramiro Sagastizabal, Xavier Bonet-Monroig, Malay Singh, M Adriaan Rol, CC Bultink, Xiang Fu, CH Price, VP Ostroukh, N Muthusubramanian, A Bruno, et al. “Experimental error mitigation via symmetry verification in a variational quantum eigensolver”. Phys. Rev. A 100, 010302 (2019).
https://​/​doi.org/​10.1103/​physreva.100.010302

ہے [83] Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert. “Exploiting symmetry in variational quantum machine learning” (2022). arXiv:2205.06217.
آر ایکس سی: 2205.06217

ہے [84] جن گو لیو، یی ہانگ ژانگ، یوآن وان، اور لی وانگ۔ "متغیر کوانٹم ایگنسولور کم کیوبٹس کے ساتھ"۔ طبیعیات Rev. Res. 1، 023025 (2019)۔
https://​/​doi.org/​10.1103/​physrevresearch.1.023025

ہے [85] Panagiotis Kl Barkoutsos, Jerome F Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J Egger, Matthias Troyer, Antonio Mezzacapo, et al. “Quantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansions”. Phys. Rev. A 98, 022322 (2018).
https://​/​doi.org/​10.1103/​physreva.98.022322

ہے [86] Hefeng Wang, S Ashhab, and Franco Nori. “Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer”. Phys. Rev. A 79, 042335 (2009).
https://​/​doi.org/​10.1103/​physreva.79.042335

ہے [87] Kazuhiro Seki, Tomonori Shirakawa, and Seiji Yunoki. “Symmetry-adapted variational quantum eigensolver”. Phys. Rev. A 101, 052340 (2020).
https://​/​doi.org/​10.1103/​physreva.101.052340

ہے [88] Bryan T. Gard, Linghua Zhu, George S. Barron, Nicholas J. Mayhall, Sophia E. Economou, and Edwin Barnes. “Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm”. Npj Quantum Inf. 6, 10 (2020).
https:/​/​doi.org/​10.1038/​s41534-019-0240-1

ہے [89] George S Barron, Bryan T Gard, Orien J Altman, Nicholas J Mayhall, Edwin Barnes, and Sophia E Economou. “Preserving symmetries for variational quantum eigensolvers in the presence of noise”. Phys. Rev. Appl. 16, 034003 (2021).
https://​/​doi.org/​10.1103/​physrevapplied.16.034003

ہے [90] Feng Zhang, Niladri Gomes, Noah F Berthusen, Peter P Orth, Cai-Zhuang Wang, Kai-Ming Ho, and Yong-Xin Yao. “Shallow-circuit variational quantum eigensolver based on symmetry-inspired hilbert space partitioning for quantum chemical calculations”. Phys. Rev. Res. 3, 013039 (2021).
https://​/​doi.org/​10.1103/​physrevresearch.3.013039

ہے [91] Han Zheng, Zimu Li, Junyu Liu, Sergii Strelchuk, and Risi Kondor. “Speeding up learning quantum states through group equivariant convolutional quantum ansätze” (2021). arXiv:2112.07611.
آر ایکس سی: 2112.07611

ہے [92] Ilya G Ryabinkin, Scott N Genin, and Artur F Izmaylov. “Constrained variational quantum eigensolver: Quantum computer search engine in the fock space”. J. Chem. Theory Comput. 15, 249–255 (2018).
https://​/​doi.org/​10.1021/​acs.jctc.8b00943

ہے [93] Andrew G Taube and Rodney J Bartlett. “New perspectives on unitary coupled-cluster theory”. International journal of quantum chemistry 106, 3393–3401 (2006).
https://​doi.org/​10.1002/​qua.21198

ہے [94] Peter JJ O’Malley, Ryan Babbush, Ian D Kivlichan, Jonathan Romero, Jarrod R McClean, Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding, et al. “Scalable quantum simulation of molecular energies”. Phys. Rev. X 6, 031007 (2016).
https://​/​doi.org/​10.1103/​physrevx.6.031007

ہے [95] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love, and Alán Aspuru-Guzik. “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz”. Quantum Sci. Technol. 4, 014008 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aad3e4

ہے [96] Dave Wecker, Matthew B Hastings, and Matthias Troyer. “Progress towards practical quantum variational algorithms”. Phys. Rev. A 92, 042303 (2015).
https://​/​doi.org/​10.1103/​physreva.92.042303

ہے [97] Dong C. Liu and Jorge Nocedal. “On the limited memory bfgs method for large scale optimization”. Mathematical Programming 45, 503–528 (1989).
https://​doi.org/​10.1007/​BF01589116

ہے [98] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. “Barren plateaus in quantum neural network training landscapes”. Nat. Commun. 9, 1–6 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

ہے [99] Yoshifumi Nakata, Christoph Hirche, Ciara Morgan, and Andreas Winter. “Unitary 2-designs from random x-and z-diagonal unitaries”. J. Math. Phys. 58, 052203 (2017).
https://​doi.org/​10.1063/​1.4983266

ہے [100] فرخ وطن اور کولن ولیمز۔ "عمومی دو کوئبٹ گیٹس کے لیے بہترین کوانٹم سرکٹس"۔ طبیعیات Rev. A 69, 032315 (2004)۔
https://​/​doi.org/​10.1103/​PhysRevA.69.032315

ہے [101] Vojtěch Havlíček، Antonio D Corcoles، Kristan Temme، Aram W Harrow، Abhinav Kandala، Jerry M Chow، اور Jay M Gambetta۔ "کوانٹم سے بہتر فیچر اسپیس کے ساتھ زیر نگرانی سیکھنے"۔ فطرت 567، 209–212 (2019)۔
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

ہے [102] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. “Swap test and hong-ou-mandel effect are equivalent”. Phys. Rev. A 87, 052330 (2013).
https://​/​doi.org/​10.1103/​physreva.87.052330

ہے [103] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger, and Patrick J Coles. “Learning the quantum algorithm for state overlap”. New J. Phys. 20, 113022 (2018).
https://​doi.org/​10.1088/​1367-2630/​aae94a

ہے [104] Kohdai Kuroiwa and Yuya O Nakagawa. “Penalty methods for a variational quantum eigensolver”. Phys. Rev. Res. 3, 013197 (2021).
https://​/​doi.org/​10.1103/​physrevresearch.3.013197

ہے [105] Chufan Lyu, Xiaoyu Tang, Junning Li, Xusheng Xu, Man-Hong Yung, and Abolfazl Bayat. “Variational quantum simulation of long-range interacting systems” (2022). arXiv:2203.14281.
آر ایکس سی: 2203.14281

ہے [106] Chufan Lyu. “Codes for symmetry enhanced variational quantum spin eigensolver”. https:/​/​gitee.com/​mindspore/​mindquantum/​tree/​research/​paper_with_code/​symmetry_enhanced_variational_quantum_spin_eigensolver (2022).
https:/​/​gitee.com/​mindspore/​mindquantum/​tree/​research/​paper_with_code/​symmetry_enhanced_variational_quantum_spin_eigensolver

کی طرف سے حوالہ دیا گیا

[1] یوہان ہوانگ، چنگیو لی، ژاؤکائی ہو، ریبنگ وو، مین ہانگ یونگ، ابوالفضل بیات، اور ژیاؤٹنگ وانگ، "ایک ارتقائی الگورتھم کے ذریعے مضبوط وسائل سے موثر کوانٹم ویریشنل انساٹز"، جسمانی جائزہ A 105 5, 052414 (2022).

[2] Margarite L. LaBorde and Mark M. Wilde, “Quantum Algorithms for Testing Hamiltonian Symmetry”, جسمانی جائزہ کے خطوط 129 16, 160503 (2022).

[3] Chufan Lyu, Xiaoyu Tang, Junning Li, Xusheng Xu, Man-Hong Yung, and Abolfazl Bayat, “Variational quantum simulation of long-range interacting systems”, آر ایکس سی: 2203.14281.

[4] Arunava Majumder, Dylan Lewis, and Sougato Bose, “Variational Quantum Circuits for Multi-Qubit Gate Automata”, آر ایکس سی: 2209.00139.

[5] Raphael César de Souza Pimenta and Anibal Thiago Bezerra, “Revisiting semiconductor bulk hamiltonians using quantum computers”, آر ایکس سی: 2208.10323.

مذکورہ بالا اقتباسات سے ہیں۔ SAO/NASA ADS (آخری بار کامیابی کے ساتھ 2023-01-21 01:01:04)۔ فہرست نامکمل ہو سکتی ہے کیونکہ تمام ناشرین مناسب اور مکمل حوالہ ڈیٹا فراہم نہیں کرتے ہیں۔

On Crossref کی طرف سے پیش خدمت کاموں کے حوالے سے کوئی ڈیٹا نہیں ملا (آخری کوشش 2023-01-21 01:01:02)۔

ٹائم اسٹیمپ:

سے زیادہ کوانٹم جرنل