Fault-tolerant syndrome extraction and cat state preparation with fewer qubits

Fault-tolerant syndrome extraction and cat state preparation with fewer qubits

Prithviraj Prabhu and Ben W. Reichardt

University of Southern California, Los Angeles, CA 90089, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We reduce the extra qubits needed for two fault-tolerant quantum computing protocols: error correction, specifically syndrome bit measurement, and cat state preparation. For distance-three fault-tolerant syndrome extraction, we show an exponential reduction in qubit overhead over the previous best protocol. For a weight-$w$ stabilizer, we demonstrate that stabilizer measurement tolerating one fault needs at most $lceil log_2 w rceil + 1$ ancilla qubits. If qubits reset quickly, four ancillas suffice. We also study the preparation of entangled cat states, and prove that the overhead for distance-three fault tolerance is logarithmic in the cat state size. These results apply both to near-term experiments with a few qubits, and to the general study of the asymptotic resource requirements of syndrome measurement and state preparation.
With $a$ flag qubits, previous methods use $O(a)$ flag patterns to identify faults. In order to use the same flag qubits more efficiently, we show how to use nearly all $2^a$ possible flag patterns, by constructing maximal-length paths through the $a$-dimensional hypercube.

[embedded content]

We propose advancements in two important aspects of fault-tolerant quantum computing: error correction and state preparation. Our protocols aim to reduce the number of extra qubits needed for these processes. We demonstrate that stabilizer measurement, crucial for error detection and correction, can be performed with overhead that is logarithmic in the weight of the stabilizer being measured. This contrasts with previous protocols which required a linearly growing overhead to tolerate a single fault. When qubits can be reset quickly, only four ancilla qubits are needed. These findings are applicable to both near-term experiments and to the general study of fault-tolerant resource requirements. For fault-tolerant cat state preparation, we prove that tolerance to one fault can again be achieved with overhead that is logarithmic in the cat state size. These improvements abound due to the optimized use of flag qubits used to identify faults, by constructing maximal-length paths through a hypercube. This method allows for efficient usage of nearly all $2^n$ flag patterns (for a hypercube of dimension $n$), an exponential improvement. Overall, these advancements contribute to more efficient and practical fault-tolerant quantum computing protocols.

â–º BibTeX data

â–º References

[1] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. “Going beyond bell’s theorem”. Pages 69–72. Springer Netherlands. Dordrecht (1989). arXiv:0712.0921.
https:/​/​doi.org/​10.1007/​978-94-017-0849-4_10
arXiv:0712.0921

[2] Nicolas Gisin and Rob Thew. “Quantum communication”. Nature Photonics 1, 165 (2007). arXiv:quant-ph/​0703255.
https:/​/​doi.org/​10.1038/​nphoton.2007.22
arXiv:quant-ph/0703255

[3] Jian-Wei Pan, Zeng-Bing Chen, Chao-Yang Lu, Harald Weinfurter, Anton Zeilinger, and Marek Å»ukowski. “Multiphoton entanglement and interferometry”. Rev. Mod. Phys. 84, 777 (2012). arXiv:0805.2853.
https:/​/​doi.org/​10.1103/​RevModPhys.84.777
arXiv:0805.2853

[4] P. W. Shor. “Fault-tolerant quantum computation”. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science. Page 56. FOCS ’96USA (1996). IEEE Computer Society. arXiv:quant-ph/​9605011.
https:/​/​doi.org/​10.1109/​SFCS.1996.548464
arXiv:quant-ph/9605011

[5] David P. DiVincenzo and Panos Aliferis. “Effective fault-tolerant quantum computation with slow measurements”. Phys. Rev. Lett. 98, 020501 (2007). arXiv:quant-ph/​0607047.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.020501
arXiv:quant-ph/0607047

[6] Ashley M. Stephens. “Efficient fault-tolerant decoding of topological color codes” (2014). arXiv:1402.3037.
arXiv:1402.3037

[7] Theodore J. Yoder and Isaac H. Kim. “The surface code with a twist”. Quantum 1, 2 (2017). arXiv:1612.04795.
https:/​/​doi.org/​10.22331/​q-2017-04-25-2
arXiv:1612.04795

[8] Christopher Chamberland, Aleksander Kubica, Theodore J Yoder, and Guanyu Zhu. “Triangular color codes on trivalent graphs with flag qubits”. New Journal of Physics 22, 023019 (2020). arXiv:1911.00355.
https:/​/​doi.org/​10.1088/​1367-2630/​ab68fd
arXiv:1911.00355

[9] Christopher Chamberland, Guanyu Zhu, Theodore J. Yoder, Jared B. Hertzberg, and Andrew W. Cross. “Topological and subsystem codes on low-degree graphs with flag qubits”. Phys. Rev. X 10, 011022 (2020). arXiv:1907.09528.
https:/​/​doi.org/​10.1103/​PhysRevX.10.011022
arXiv:1907.09528

[10] Rui Chao and Ben W. Reichardt. “Quantum error correction with only two extra qubits”. Phys. Rev. Lett. 121, 050502 (2018). arXiv:1705.02329.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.050502
arXiv:1705.02329

[11] Rui Chao and Ben W. Reichardt. “Fault-tolerant quantum computation with few qubits”. npj Quantum Information 4, 42 (2018). arXiv:1705.05365.
https:/​/​doi.org/​10.1038/​s41534-018-0085-z
arXiv:1705.05365

[12] A. M. Steane. “Active stabilization, quantum computation, and quantum state synthesis”. Phys. Rev. Lett. 78, 2252 (1997). arXiv:quant-ph/​9611027.
https:/​/​doi.org/​10.1103/​PhysRevLett.78.2252
arXiv:quant-ph/9611027

[13] E. Knill. “Scalable quantum computing in the presence of large detected-error rates”. Phys. Rev. A 71, 042322 (2005). arXiv:quant-ph/​0312190.
https:/​/​doi.org/​10.1103/​PhysRevA.71.042322
arXiv:quant-ph/0312190

[14] Shilin Huang and Kenneth R. Brown. “Between shor and steane: A unifying construction for measuring error syndromes”. Phys. Rev. Lett. 127, 090505 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.090505

[15] Frank Gray. Pulse code communication. U.S. Patent 2632058A. Issued Mar. 17, 1953.

[16] M. Gardner. “The Binary Gray Code”. In Knotted Doughnuts and other Mathematical Entertainments. Pages 22–39. W. H. Freeman and Company, New York (1986).

[17] Nicolas Delfosse, Ben W. Reichardt, and Krysta M. Svore. “Beyond single-shot fault-tolerant quantum error correction”. IEEE Transactions on Information Theory 68, 287–301 (2022). arXiv:2002.05180.
https:/​/​doi.org/​10.1109/​TIT.2021.3120685
arXiv:2002.05180

[18] Christopher Chamberland and Michael E. Beverland. “Flag fault-tolerant error correction with arbitrary distance codes”. Quantum 2, 53 (2018). arXiv:1708.02246.
https:/​/​doi.org/​10.22331/​q-2018-02-08-53
arXiv:1708.02246

[19] Rui Chao and Ben W. Reichardt. “Flag fault-tolerant error correction for any stabilizer code”. PRX Quantum 1, 010302 (2020). arXiv:1912.09549.
https:/​/​doi.org/​10.1103/​PRXQuantum.1.010302
arXiv:1912.09549

Cited by

[1] Christopher Chamberland and Earl T. Campbell, “Circuit-level protocol and analysis for twist-based lattice surgery”, Physical Review Research 4 2, 023090 (2022).

[2] Benjamin Anker and Milad Marvian, “Flag Gadgets based on Classical Codes”, arXiv:2212.10738, (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2023-10-24 16:33:16). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2023-10-24 16:33:14: Could not fetch cited-by data for 10.22331/q-2023-10-24-1154 from Crossref. This is normal if the DOI was registered recently.

Time Stamp:

More from Quantum Journal