Stabilisering av Hubbard-Thouless-pumpar genom icke-lokal fermionisk repulsion

Stabilisering av Hubbard-Thouless-pumpar genom icke-lokal fermionisk repulsion

Javier Argüello-Luengo1, Manfred J. Mark2,3, Francesca Ferlaino2,3, Maciej Lewenstein1,4, Luca Barbiero5och Sergi Julià-Farré1

1ICFO – Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spanien
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Österrike
3Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Österrike
4ICREA, sid. Lluís Companys 23, 08010 Barcelona, ​​Spanien
5Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italien

Hitta det här uppsatsen intressant eller vill diskutera? Scite eller lämna en kommentar på SciRate.

Abstrakt

Thouless pumpning representerar ett kraftfullt koncept för att undersöka kvantiserade topologiska invarianter i kvantsystem. Vi utforskar denna mekanism i en generaliserad Rice-Mele Fermi-Hubbard-modell som kännetecknas av närvaron av konkurrerande interaktioner på plats och mellan platser. I motsats till nyligen genomförda experimentella och teoretiska resultat, som visar en nedbrytning av kvantiserad pumpning inducerad av repulsionen på plats, bevisar vi att tillräckligt stora interaktionsinteraktioner möjliggör en interaktionsinducerad återhämtning av Thouless-pumpar. Vår analys avslöjar vidare att förekomsten av stabil topologisk transport vid stora interaktioner är kopplad till närvaron av en spontan bindningsordningsvåg i modellens grundtillståndsfasdiagram. Slutligen diskuterar vi en konkret experimentell uppsättning baserad på ultrakalla magnetiska atomer i ett optiskt gitter för att realisera den nyligen introducerade Thouless-pumpen. Våra resultat ger en ny mekanism för att stabilisera Thouless-pumpar i interagerande kvantsystem.

Topologiska faser har väckt stort intresse under de senaste åren på grund av deras slående globala egenskaper, i slutändan relaterade till närvaron av en topologisk invariant som är robust mot lokala ofullkomligheter. Medan topologi existerar för system av icke-interagerande partiklar, förväntas tillägget av många kroppsinteraktioner leda till ännu mer exotiska fenomen. I detta sammanhang ger vi numeriska bevis på interaktionsinducerade topologiska egenskaper hos endimensionella fermioniska system, och föreslår en experimentell uppställning för att kvantsimulera modellen.

För endimensionella gittersystem manifesterar sig närvaron av en global topologisk invariant genom den kvantiserade transporten av partiklar i cykliska dynamikexperiment, ett fenomen som kallas Thouless pump. I detta arbete simulerar vi numeriskt denna periodiska transportdynamik i en kedja av fermioner som utsätts för både avstötning på plats och närmaste granne, för att identifiera för vilka värden av interaktioner systemet är topologiskt, dvs det transporterar en heltal mängd partiklar i varje cykel av dynamiken. Vi finner att trots att interaktioner på plats och mellan platser leder till frånvaro av kvantiserad transport när den betraktas ensam, vilket rapporterats i tidigare teoretiska och experimentella arbeten, leder den samtidiga närvaron av dessa två termer till exotiska regimer där ökande interaktioner leder till en återhämtning av topologisk Thouless pump. Vi visar också att magnetiska atomer fångade i ett optiskt gitter representerar en utmärkt plattform för att kvantsimulera denna fysik.

Detta arbete visar att frånstötande fermioniska interaktioner inte är fundamentalt skadliga för Thouless-pumpar, vilket öppnar möjligheten att experimentellt observera en interaktionsinducerad återhämtning av endimensionell topologisk transport.

► BibTeX-data

► Referenser

[1] K. v. Klitzing, G. Dorda och M. Pepper, Phys. Pastor Lett. 45, 494 (1980).
https: / / doi.org/ 10.1103 / PhysRevLett.45.494

[2] DJ Thouless, M. Kohmoto, MP Nightingale och M. den Nijs, Phys. Rev. Lett. 49, 405 (1982a).
https: / / doi.org/ 10.1103 / PhysRevLett.49.405

[3] MZ Hasan och CL Kane, Rev. Mod. Phys. 82, 3045 (2010).
https: / / doi.org/ 10.1103 / RevModPhys.82.3045

[4] C.-K. Chiu, JCY Teo, AP Schnyder och S. Ryu, pastor Mod. Phys. 88, 035005 (2016).
https: / / doi.org/ 10.1103 / RevModPhys.88.035005

[5] LD Landau, EM Lifshitz och M. Pitaevskii, Statistisk fysik (Butterworth-Heinemann, New York, 1999).

[6] KG Wilson och J. Kogut, Phys. Rep. 12, 75 (1974).
https:/​/​doi.org/​10.1016/​0370-1573(74)90023-4

[7] K. von Klitzing, Nat. Phys. 13, 198 (2017).
https: / / doi.org/ 10.1038 / nphys4029

[8] C. Nayak, SH Simon, A. Stern, M. Freedman och S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
https: / / doi.org/ 10.1103 / RevModPhys.80.1083

[9] S. Rachel, Rep. Prog. Phys. 81, 116501 (2018).
https:/​/​doi.org/​10.1088/​1361-6633/​aad6a6

[10] DJ Thouless, Phys. Rev. B 27, 6083 (1983).
https: / / doi.org/ 10.1103 / PhysRevB.27.6083

[11] Q. Niu och DJ Thouless, Journal of Physics A: Mathematical and General 17, 2453 (1984).
https:/​/​doi.org/​10.1088/​0305-4470/​17/​12/​016

[12] E. Berg, M. Levin och E. Altman, Phys. Rev. Lett. 106, 110405 (2011).
https: / / doi.org/ 10.1103 / PhysRevLett.106.110405

[13] S. Greschner, S. Mondal och T. Mishra, Phys. Rev. A 101, 053630 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.101.053630

[14] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger och F. Heidrich-Meisner, Phys. Rev. B 98, 245148 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.98.245148

[15] S. Mondal, S. Greschner, L. Santos och T. Mishra, Phys. Rev. A 104, 013315 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.104.013315

[16] L. Lin, Y. Ke och C. Lee, Phys. Rev. A 101, 023620 (2020a).
https: / / doi.org/ 10.1103 / PhysRevA.101.023620

[17] S. Mondal, A. Padhan och T. Mishra, Phys. Rev. B 106, L201106 (2022a).
https://​/​doi.org/​10.1103/​PhysRevB.106.L201106

[18] Y. Kuno och Y. Hatsugai, Phys. Rev. Res. 2, 042024 (2020).
https: / / doi.org/ 10.1103 / PhysRevResearch.2.042024

[19] A. Padhan, S. Mondal, S. Vishveshwara och T. Mishra, "Interacting bosons on a Su-Schrieffer-Heeger ladder: Topological phases and Thouless pumping," (2023), arXiv:2306.09325 [cond-mat.quant- gas].
arXiv: 2306.09325

[20] M. Nakagawa, T. Yoshida, R. Peters och N. Kawakami, Phys. Rev. B 98, 115147 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.98.115147

[21] E. Bertok, F. Heidrich-Meisner och AA Aligia, Phys. Rev. B 106, 045141 (2022).
https: / / doi.org/ 10.1103 / PhysRevB.106.045141

[22] S. Mondal, E. Bertok och F. Heidrich-Meisner, Phys. Rev. B 106, 235118 (2022b).
https: / / doi.org/ 10.1103 / PhysRevB.106.235118

[23] S. Mondal, E. Bertok och F. Heidrich-Meisner, Phys. Rev. B 107, 239903 (2023).
https: / / doi.org/ 10.1103 / PhysRevB.107.239903

[24] RP Feynman, Int. J. Theor. Phys. 21, 467 (1982).
https: / / doi.org/ 10.1007 / bf02650179

[25] JI Cirac och P. Zoller, Nat. Phys. 8, 264 (2012).
https: / / doi.org/ 10.1038 / nphys2275

[26] IM Georgescu, S. Ashhab och F. Nori, Rev. Mod. Phys. 86, 153 (2014).
https: / / doi.org/ 10.1103 / RevModPhys.86.153

[27] AJ Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer och P. Zoller, Nature 607, 667 (2022).
https:/​/​doi.org/​10.1038/​s41586-022-04940-6

[28] E. Altman, KR Brown, G. Carleo, LD Carr, E. Demler, C. Chin, B. DeMarco, SE Economou, MA Eriksson, K.-MC Fu, M. Greiner, KR Hazzard, RG Hulet, AJ Kollár BL Lev, MD Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K.-K. Ni, AC Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. Spielman, K. Temme, DS Weiss, J. Vučković, V. Vuletić, J. Ye och M. Zwierlein, PRX Quantum 2, 017003 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.017003

[29] NR Cooper, J. Dalibard och IB Spielman, Rev. Mod. Phys. 91, 015005 (2019).
https: / / doi.org/ 10.1103 / RevModPhys.91.015005

[30] R. Citro och M. Aidelsburger, Nat. Rev. Phys. 5, 87 (2023).
https:/​/​doi.org/​10.1038/​s42254-022-00545-0

[31] T. Ozawa, HM Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, MC Rechtsman, D. Schuster, J. Simon, O. Zilberberg och I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).
https: / / doi.org/ 10.1103 / RevModPhys.91.015006

[32] YE Kraus, Y. Lahini, Z. Ringel, M. Verbin och O. Zilberberg, Phys. Rev. Lett. 109, 106402 (2012).
https: / / doi.org/ 10.1103 / PhysRevLett.109.106402

[33] A. Cerjan, M. Wang, S. Huang, KP Chen och MC Rechtsman, Light: Science & Applications 9, 178 (2020).
https:/​/​doi.org/​10.1038/​s41377-020-00408-2

[34] M. Jürgensen, S. Mukherjee och MC Rechtsman, Nature 596, 63 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03688-9

[35] M. Jürgensen, S. Mukherjee, C. Jörg och MC Rechtsman, Nat. Phys. 19, 420 (2023).
https: / / doi.org/ 10.1038 / s41567-022-01871-x

[36] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger och I. Bloch, Nat. Phys. 12, 350 (2016).
https: / / doi.org/ 10.1038 / nphys3584

[37] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer och Y. Takahashi, Nat. Phys. 12, 296 (2016).
https: / / doi.org/ 10.1038 / nphys3622

[38] J. Minguzzi, Z. Zhu, K. Sandholzer, A.-S. Walter, K. Viebahn och T. Esslinger, Phys. Rev. Lett. 129, 053201 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.129.053201

[39] SOM. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S. Roschinski, K. Sandholzer, K. Viebahn och T. Esslinger, Nat. Phys. 19, 1471 (2023).
https: / / doi.org/ 10.1038 / s41567-023-02145-w

[40] K. Viebahn, A.-S. Walter, E. Bertok, Z. Zhu, M. Gächter, AA Aligia, F. Heidrich-Meisner och T. Esslinger, "Interaction-induced charge pumping in a topological many-body system," (2023), arXiv:2308.03756 [kond-mat.kvant-gas].
arXiv: 2308.03756

[41] M. Lewenstein, A. Sanpera och V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum many-body systems, Vol. 54 (Oxford University Press, Oxford, 2012).
http://​/​www.oxfordscholarship.com/​view/​10.1093/​acprof:oso/​9780199573127.001.0001/​acprof-9780199573127

[42] I. Bloch, J. Dalibard och W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
https: / / doi.org/ 10.1103 / RevModPhys.80.885

[43] P. Sompet, S. Hirthe, D. Bourgund, T. Chalopin, J. Bibo, J. Koepsell, P. Bojović, R. Verresen, F. Pollmann, G. Salomon, C. Gross, TA Hilker och I. Bloch, Nature 606, 484 (2022).
https: / / doi.org/ 10.1038 / s41586-022-04688-z

[44] J. Léonard, S. Kim, J. Kwan, P. Segura, F. Grusdt, C. Repellin, N. Goldman och M. Greiner, Nature 619, 495 (2023).
https:/​/​doi.org/​10.1038/​s41586-023-06122-4

[45] S. Ejima och S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007).
https: / / doi.org/ 10.1103 / PhysRevLett.99.216403

[46] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein och T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).
https:/​/​doi.org/​10.1088/​0034-4885/​72/​12/​126401

[47] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, BL Lev och T. Pfau, Reports on Progress in Physics 86, 026401 (2022).
https://​/​doi.org/​10.1088/​1361-6633/​aca814

[48] U. Schollwöck, Ann. Phys. 326, 96 (2011).
https: / / doi.org/ 10.1016 / j.aop.2010.09.012

[49] J. Hauschild och F. Pollmann, SciPost Phys. Lect. Notes , 5 (2018).
https: / / doi.org/ 10.21468 / SciPostPhysLectNotes.5

[50] M. Nakamura, J. Phys. Soc. Japan 68, 3123 (1999).
https: / ⠀ </ ⠀ <doi.org/†<10.1143 / ⠀ <JPSJ.68.3123

[51] M. Nakamura, Phys. Rev. B 61, 16377 (2000).
https: / / doi.org/ 10.1103 / PhysRevB.61.16377

[52] E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002).
https: / / doi.org/ 10.1103 / PhysRevLett.89.236401

[53] P. Sengupta, AW Sandvik och DK Campbell, Phys. Rev. B 65, 155113 (2002).
https: / / doi.org/ 10.1103 / PhysRevB.65.155113

[54] AW Sandvik, L. Balents och DK Campbell, Phys. Rev. Lett. 92, 236401 (2004).
https: / / doi.org/ 10.1103 / PhysRevLett.92.236401

[55] YZ Zhang, Phys. Rev. Lett. 92, 246404 (2004).
https: / / doi.org/ 10.1103 / PhysRevLett.92.246404

[56] K.-M. Tam, S.-W. Tsai och DK Campbell, Phys. Rev. Lett. 96, 036408 (2006).
https: / / doi.org/ 10.1103 / PhysRevLett.96.036408

[57] S. Glocke, A. Klümper och J. Sirker, Phys. Rev. B 76, 155121 (2007).
https: / / doi.org/ 10.1103 / PhysRevB.76.155121

[58] M. Di Dio, L. Barbiero, A. Recati och M. Dalmonte, Phys. Rev. A 90, 063608 (2014).
https: / / doi.org/ 10.1103 / PhysRevA.90.063608

[59] S. Julià-Farré, D. González-Cuadra, A. Patscheider, MJ Mark, F. Ferlaino, M. Lewenstein, L. Barbiero och A. Dauphin, Phys. Rev. Res. 4, L032005 (2022).
https://​/​doi.org/​10.1103/​PhysRevResearch.4.L032005

[60] MJ Rice och EJ Mele, Phys. Rev. Lett. 49, 1455 (1982).
https: / / doi.org/ 10.1103 / PhysRevLett.49.1455

[61] WP Su, JR Schrieffer och AJ Heeger, Phys. Rev. Lett. 42, 1698 (1979).
https: / / doi.org/ 10.1103 / PhysRevLett.42.1698

[62] S. Ryu, AP Schnyder, A. Furusaki och AWW Ludwig, New J. Phys. 12, 065010 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​6/​065010

[63] SR Manmana, AM Essin, RM Noack och V. Gurarie, Phys. Rev. B 86, 205119 (2012).
https: / / doi.org/ 10.1103 / PhysRevB.86.205119

[64] V. Gurarie, Phys. Rev. B 83, 085426 (2011).
https: / / doi.org/ 10.1103 / PhysRevB.83.085426

[65] T. Yoshida, R. Peters, S. Fujimoto och N. Kawakami, Phys. Rev. Lett. 112, 196404 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.112.196404

[66] D. Wang, S. Xu, Y. Wang och C. Wu, Phys. Rev. B 91, 115118 (2015).
https: / / doi.org/ 10.1103 / PhysRevB.91.115118

[67] B.-T. Ja, L.-Z. Mu och H. Fan, Phys. Rev. B 94, 165167 (2016).
https: / / doi.org/ 10.1103 / PhysRevB.94.165167

[68] B. Sbierski och C. Karrasch, Phys. Rev. B 98, 165101 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.98.165101

[69] L. Barbiero, L. Santos och N. Goldman, Phys. Rev. B 97, 201115 (2018).
https: / / doi.org/ 10.1103 / PhysRevB.97.201115

[70] NH Le, AJ Fisher, NJ Curson och E. Ginossar, npj Quantum Inf. 6, 24 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-0253-9

[71] Y.-T. Lin, DM Kennes, M. Pletyukhov, CS Weber, H. Schoeller och V. Meden, Phys. Rev. B 102, 085122 (2020b).
https: / / doi.org/ 10.1103 / PhysRevB.102.085122

[72] A. Montorsi, U. Bhattacharya, D. González-Cuadra, M. Lewenstein, G. Palumbo och L. Barbiero, Phys. Rev. B 106, L241115 (2022).
https://​/​doi.org/​10.1103/​PhysRevB.106.L241115

[73] DJ Thouless, M. Kohmoto, MP Nightingale och M. den Nijs, Phys. Rev. Lett. 49, 405 (1982b).
https: / / doi.org/ 10.1103 / PhysRevLett.49.405

[74] SR White, Phys. Pastor Lett. 69, 2863 (1992).
https: / / doi.org/ 10.1103 / PhysRevLett.69.2863

[75] R. Orús och G. Vidal, Phys. Rev. B 78, 155117 (2008).
https: / / doi.org/ 10.1103 / PhysRevB.78.155117

[76] JA Marks, M. Schüler, JC Budich och TP Devereaux, Phys. Rev. B 103, 035112 (2021).
https: / / doi.org/ 10.1103 / PhysRevB.103.035112

[77] K. Loida, J.-S. Bernier, R. Citro, E. Orignac och C. Kollath, Phys. Rev. Lett. 119, 230403 (2017).
https: / / doi.org/ 10.1103 / PhysRevLett.119.230403

[78] L. Barbiero, A. Montorsi och M. Roncaglia, Phys. Rev. B 88, 035109 (2013).
https: / / doi.org/ 10.1103 / PhysRevB.88.035109

[79] WS Bakr, JI Gillen, A. Peng, S. Fölling och M. Greiner, Nature 462, 74 (2009).
https: / / doi.org/ 10.1038 / nature08482

[80] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, MC Bañuls, L. Pollet, I. Bloch och S. Kuhr, Science 334, 200 (2011) ).
https: / / doi.org/ 10.1126 / science.1209284

[81] TA Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E. Demler, I. Bloch och C. Gross, Science 357, 484 (2017).
https: / / doi.org/ 10.1126 / science.aam8990

[82] A. Patscheider, B. Zhu, L. Chomaz, D. Petter, S. Baier, A.-M. Rey, F. Ferlaino och MJ Mark, Phys. Rev. Research 2, 023050 (2020).
https: / / doi.org/ 10.1103 / PhysRevResearch.2.023050

[83] L. Su, A. Douglas, M. Szurek, R. Groth, SF Ozturk, A. Krahn, AH Hébert, GA Phelps, S. Ebadi, S. Dickerson, F. Ferlaino, O. Marković och M. Greiner, Nature 622, 724 (2023).
https:/​/​doi.org/​10.1038/​s41586-023-06614-3

[84] S. Baier, D. Petter, JH Becher, A. Patscheider, G. Natale, L. Chomaz, MJ Mark och F. Ferlaino, Phys. Rev. Lett. 121, 093602 (2018).
https: / / doi.org/ 10.1103 / PhysRevLett.121.093602

[85] J. Fraxanet, D. González-Cuadra, T. Pfau, M. Lewenstein, T. Langen och L. Barbiero, Phys. Rev. Lett. 128, 043402 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.128.043402

[86] M. Sohmen, MJ Mark, M. Greiner och F. Ferlaino, SciPost Phys. 15, 182 (2023).
https: / / doi.org/ 10.21468 / SciPostPhys.15.5.182

[87] AD Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm och C. Chin, Phys. Rev. A 79, 013622 (2009).
https: / / doi.org/ 10.1103 / PhysRevA.79.013622

Citerad av

[1] Sergi Julià-Farré, Javier Argüello-Luengo, Loïc Henriet och Alexandre Dauphin, "Quantized Thouless pumps protected by interactions in dimerized Rydberg pincet arrays", arXiv: 2402.09311, (2024).

[2] Ashirbad Padhan och Tapan Mishra, "Störningsdriven Thouless laddningspump i en kvasiperiodisk kedja", arXiv: 2312.16568, (2023).

Ovanstående citat är från SAO / NASA ADS (senast uppdaterad framgångsrikt 2024-03-16 01:49:46). Listan kan vara ofullständig eftersom inte alla utgivare tillhandahåller lämpliga och fullständiga citatdata.

On Crossrefs citerade service Inga uppgifter om citerande verk hittades (sista försök 2024-03-16 01:49:45).

Tidsstämpel:

Mer från Quantum Journal