گہرے نیورل نیٹ ورکس اور چھوٹے $^4He_N$ کلسٹرز کے لیے متغیر مونٹی کارلو طریقہ کے درمیان ہم آہنگی

گہرے نیورل نیٹ ورکس اور چھوٹے $^4He_N$ کلسٹرز کے لیے متغیر مونٹی کارلو طریقہ کے درمیان ہم آہنگی

William Freitas اور S. A. Vitiello

Instituto de Física Gleb Wataghin, University of Campinas – UNICAMP 13083-859 Campinas – SP, Brazil

اس کاغذ کو دلچسپ لگتا ہے یا اس پر بات کرنا چاہتے ہیں؟ SciRate پر تبصرہ کریں یا چھوڑیں۔.

خلاصہ

We introduce a neural network-based approach for modeling wave functions that satisfy Bose-Einstein statistics. Applying this model to small $^4He_N$ clusters (with N ranging from 2 to 14 atoms), we accurately predict ground state energies, pair density functions, and two-body contact parameters $C^{(N)}_2$ related to weak unitarity. The results obtained via the variational Monte Carlo method exhibit remarkable agreement with previous studies using the diffusion Monte Carlo method, which is considered exact within its statistical uncertainties. This indicates the effectiveness of our neural network approach for investigating many-body systems governed by Bose-Einstein statistics.

Artificial neural networks, inspired by the structure of the brain, are intricate systems of interconnected artificial neurons. These computational models store information through learning algorithms. Our research delves into the application of artificial neural networks for modeling quantum systems governed by Bose-Einstein statistics. Specifically, we focus on small clusters composed of up to 14 helium atoms. The learning process, akin to how our proposed neural network adapts itself to achieve the lowest variational energy, falls under the domain of machine learning.

Remarkably, our results in obtaining a variational wave function align with previous studies that utilized established methods yielding exact results within statistical uncertainties. Once this stage is achieved, the model can comprehensively explore various quantum phenomena and properties. This capability, for instance, facilitates the investigation of quantum correlations among atoms within the cluster, providing insights into how these correlations evolve with cluster size and their implications for the quantum nature and size-dependent stability of the system. The success in describing these systems through neural networks underscores the effectiveness of this approach in exploring bosonic systems, an area that has been less explored by these networks until now.

► BibTeX ڈیٹا

► حوالہ جات

ہے [1] Li Yang, Zhaoqi Leng, Guangyuan Yu, Ankit Patel, Wen-Jun Hu, and Han Pu. Deep learning-enhanced variational Monte Carlo method for quantum many-body physics. Physical Review Research, 2 (1): 012039, 2020-02. 10.1103/​physrevresearch.2.012039.
https://​/​doi.org/​10.1103/​physrevresearch.2.012039

ہے [2] David Pfau, James S. Spencer, Alexander G. D. G. Matthews, and W. M. C. Foulkes. Ab initio solution of the many-electron schrödinger equation with deep neural networks. Physical Review Research, 2 (3): 033429, 2020-09. 10.1103/​physrevresearch.2.033429.
https://​/​doi.org/​10.1103/​physrevresearch.2.033429

ہے [3] Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic schrödinger equation. Nature Chemistry, 12 (10): 891–897, 2020-09. 10.1038/​s41557-020-0544-y.
https://​doi.org/​10.1038/​s41557-020-0544-y

ہے [4] Jan Kessler, Francesco Calcavecchia, and Thomas D. Kühne. Artificial neural networks as trial wave functions for quantum Monte Carlo. Advanced Theory and Simulations, 4 (4): 2000269, 2021-01. 10.1002/​adts.202000269.
https:/​/​doi.org/​10.1002/​adts.202000269

ہے [5] Gabriel Pescia, Jiequn Han, Alessandro Lovato, Jianfeng Lu, and Giuseppe Carleo. Neural-network quantum states for periodic systems in continuous space. Physical Review Research, 4 (2): 023138, 2022-05. 10.1103/​physrevresearch.4.023138.
https://​/​doi.org/​10.1103/​physrevresearch.4.023138

ہے [6] Mario Krenn, Robert Pollice, Si Yue Guo, Matteo Aldeghi, Alba Cervera-Lierta, Pascal Friederich, Gabriel dos Passos Gomes, Florian Häse, Adrian Jinich, AkshatKumar Nigam, Zhenpeng Yao, and Alán Aspuru-Guzik. On scientific understanding with artificial intelligence. Nature Reviews Physics, 4 (12): 761–769, 2022-10. 10.1038/​s42254-022-00518-3.
https:/​/​doi.org/​10.1038/​s42254-022-00518-3

ہے [7] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355 (6325): 602–606, feb 2017. 10.1126/​science.aag2302.
https://​doi.org/​10.1126/​science.aag2302

ہے [8] Michele Ruggeri, Saverio Moroni, and Markus Holzmann. Nonlinear network description for many-body quantum systems in continuous space. Physical Review Letters, 120 (120): 205302, May 2018. 10.1103/​physrevlett.120.205302.
https://​/​doi.org/​10.1103/​physrevlett.120.205302

ہے [9] Hiroki Saito and Masaya Kato. Machine learning technique to find quantum many-body ground states of bosons on a lattice. Journal of the Physical Society of Japan, 87 (1): 014001, 2018-01. 10.7566/​jpsj.87.014001.
https://​doi.org/​10.7566/​jpsj.87.014001

ہے [10] A. J. Yates and D. Blume. Structural properties of $^4$He$_{N}$ (${N}$=2-10) clusters for different potential models at the physical point and at unitarity. Physical Review A, 105 (2): 022824, 2022-02. 10.1103/​physreva.105.022824.
https://​/​doi.org/​10.1103/​physreva.105.022824

ہے [11] J. Peter Toennies. Helium nanodroplets: Formation, physical properties and superfluidity. In Topics in Applied Physics, pages 1–40. Springer International Publishing, 2022. 10.1007/​978-3-030-94896-2_1.
https:/​/​doi.org/​10.1007/​978-3-030-94896-2_1

ہے [12] P. Recchia, A. Kievsky, L. Girlanda, and M. Gattobigio. Subleading contributions to $n$-boson systems inside the universal window. Physical Review A, 106 (2): 022812, 2022-08. 10.1103/​physreva.106.022812.
https://​/​doi.org/​10.1103/​physreva.106.022812

ہے [13] Elena Spreafico, Giorgio Benedek, Oleg Kornilov, and Jan Peter Toennies. Magic numbers in boson $^4$He clusters: The auger evaporation mechanism. Molecules, 26 (20): 6244, 2021-10. 10.3390/​molecules26206244.
https:/​/​doi.org/​10.3390/​molecules26206244

ہے [14] Daniel Odell, Arnoldas Deltuva, and Lucas Platter. van der waals interaction as the starting point for an effective field theory. Physical Review A, 104 (2): 023306, 2021-08. 10.1103/​physreva.104.023306.
https://​/​doi.org/​10.1103/​physreva.104.023306

ہے [15] B. Bazak, M. Valiente, and N. Barnea. Universal short-range correlations in bosonic helium clusters. Physical Review A, 101 (1): 010501, 2020-01. 10.1103/​physreva.101.010501.
https://​/​doi.org/​10.1103/​physreva.101.010501

ہے [16] A. Kievsky, A. Polls, B. Juliá-Díaz, N. K. Timofeyuk, and M. Gattobigio. Few bosons to many bosons inside the unitary window: A transition between universal and nonuniversal behavior. Physical Review A, 102 (6): 063320, 2020-12. 10.1103/​physreva.102.063320.
https://​/​doi.org/​10.1103/​physreva.102.063320

ہے [17] B. Bazak, J. Kirscher, S. König, M. Pavón Valderrama, N. Barnea, and U. van Kolck. Four-body scale in universal few-boson systems. Physical Review Letters, 122 (14), apr 2019. 10.1103/​physrevlett.122.143001.
https://​/​doi.org/​10.1103/​physrevlett.122.143001

ہے [18] A. Kievsky, M. Viviani, R. Álvarez-Rodríguez, M. Gattobigio, and A. Deltuva. Universal behavior of few-boson systems using potential models. Few-Body Systems, 58 (2), 2017-01. 10.1007/​s00601-017-1228-z.
https://​doi.org/​10.1007/​s00601-017-1228-z

ہے [19] J. Carlson, S. Gandolfi, U. van Kolck, and S. A. Vitiello. Ground-state properties of unitary Bosons: From clusters to matter. Phys. Rev. Lett., 119: 223002, Nov 2017. 10.1103/​PhysRevLett.119.223002. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.119.223002.
https://​/​doi.org/​10.1103/​PhysRevLett.119.223002

ہے [20] Ronald A. Aziz, Frederick R.W. McCourt, and Clement C.K. Wong. A new determination of the ground state interatomic potential for He$_2$. Molecular Physics, 61 (6): 1487–1511, 1987-08. 10.1080/​00268978700101941.
https://​doi.org/​10.1080/​00268978700101941

ہے [21] Rafael Guardiola, Oleg Kornilov, Jesús Navarro, and J. Peter Toennies. Magic numbers, excitation levels, and other properties of small neutral he4 clusters (n$leqslant$50). The Journal of Chemical Physics, 124 (8): 084307, 2006-02. 10.1063/​1.2140723.
https://​doi.org/​10.1063/​1.2140723

ہے [22] W. L. McMillan. Ground state of liquid $^4$He. Phys. Rev., 138 (2A): A442–A451, Apr 1965. 10.1103/​PhysRev.138.A442.
https://​/​doi.org/​10.1103/​PhysRev.138.A442

ہے [23] R. P. Feynman and Michael Cohen. Energy spectrum of the excitations in liquid helium. Phys. Rev., 102: 1189–1204, Jun 1956. 10.1103/​PhysRev.102.1189. URL http:/​/​link.aps.org/​doi/​10.1103/​PhysRev.102.1189.
https://​/​doi.org/​10.1103/​PhysRev.102.1189

ہے [24] K. E. Schmidt, Michael A. Lee, M. H. Kalos, and G. V. Chester. Structure of the ground state of a fermion fluid. Phys. Rev. Lett., 47: 807–810, Sep 1981. 10.1103/​PhysRevLett.47.807. URL http:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.47.807.
https://​/​doi.org/​10.1103/​PhysRevLett.47.807

ہے [25] David Pfau James S. Spencer and FermiNet Contributors. FermiNet, 2020. URL http:/​/​github.com/​deepmind/​ferminet.
http:/​/​github.com/​deepmind/​ferminet

ہے [26] Max Wilson, Saverio Moroni, Markus Holzmann, Nicholas Gao, Filip Wudarski, Tejs Vegge, and Arghya Bhowmik. Neural network ansatz for periodic wave functions and the homogeneous electron gas. Phys. Rev. B, 107: 235139, Jun 2023. 10.1103/​PhysRevB.107.235139. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.107.235139.
https://​/​doi.org/​10.1103/​PhysRevB.107.235139

ہے [27] D. M. Ceperley and M. H. Kalos. Quantum many-body problems. In K. Binder, editor, Monte Carlo Methods in Statistics Physics, volume 7 of Topics in Current Physics, chapter Quantum Many-Body Problems, pages 145–194. Springer-Verlag, Berlin, second edition, 1986. 10.1007/​978-3-642-82803-4_4.
https:/​/​doi.org/​10.1007/​978-3-642-82803-4_4

ہے [28] Filippo Vicentini, Damian Hofmann, Attila Szabó, Dian Wu, Christopher Roth, Clemens Giuliani, Gabriel Pescia, Jannes Nys, Vladimir Vargas-Calderón, Nikita Astrakhantsev, and Giuseppe Carleo. NetKet 3: Machine learning toolbox for many-body quantum systems. SciPost Physics Codebases, 2022-08. 10.21468/​scipostphyscodeb.7.
https:/​/​doi.org/​10.21468/​scipostphyscodeb.7

ہے [29] James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning – Volume 37, 2015. 10.48550/​arXiv.1503.05671. URL https:/​/​dl.acm.org/​doi/​10.5555/​3045118.3045374.
https://​doi.org/​10.48550/​arXiv.1503.05671
https://​dl.acm.org/​doi/​10.5555/​3045118.3045374

ہے [30] William Freitas. BoseNet Helium Clusters, 2023. URL https:/​/​github.com/​freitas-esw/​bosenet-helium-clusters.
https:/​/​github.com/​freitas-esw/​bosenet-helium-clusters

ہے [31] Nicholas Gao and Stephan Günnemann. Sampling-free inference for ab-initio potential energy surface networks. arXiv:2205.14962, 2022. 10.48550/​arXiv.2205.14962.
https://​doi.org/​10.48550/​arXiv.2205.14962
آر ایکس سی: 2205.14962

ہے [32] Ingrid von Glehn, James S. Spencer, and David Pfau. A self-attention ansatz for ab-initio quantum chemistry. axXiv:2211.13672, 2023. 10.48550/​arXiv.2211.13672.
https://​doi.org/​10.48550/​arXiv.2211.13672

ہے [33] M. Przybytek, W. Cencek, J. Komasa, G. Łach, B. Jeziorski, and K. Szalewicz. Relativistic and quantum electrodynamics effects in the helium pair potential. Physical Review Letters, 104 (18): 183003, 2010-05. 10.1103/​physrevlett.104.183003.
https://​/​doi.org/​10.1103/​physrevlett.104.183003

ہے [34] Stefan Zeller and et al. Imaging the He$_2$ quantum halo state using a free electron laser. Proceedings of the National Academy of Sciences, 113 (51): 14651–14655, 2016-12. 10.1073/​pnas.1610688113.
https://​doi.org/​10.1073/​pnas.1610688113

ہے [35] Shina Tan. Energetics of a strongly correlated Fermi gas. Ann. Phys., 323 (12): 2952 – 2970, 2008a. ISSN 0003-4916. http:/​/​dx.doi.org/​10.1016/​j.aop.2008.03.004. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491608000456.
https://​/​doi.org/​10.1016/​j.aop.2008.03.004
http://​/​www.sciencedirect.com/​science/​article/​pii/​S0003491608000456

ہے [36] Shina Tan. Large momentum part of a strongly correlated Fermi gas. Ann. Phys., 323 (12): 2971 – 2986, 2008b. ISSN 0003-4916. http:/​/​dx.doi.org/​10.1016/​j.aop.2008.03.005. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491608000432.
https://​/​doi.org/​10.1016/​j.aop.2008.03.005
http://​/​www.sciencedirect.com/​science/​article/​pii/​S0003491608000432

ہے [37] Shina Tan. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas. Ann. Phys., 323 (12): 2987 – 2990, 2008c. ISSN 0003-4916. http:/​/​dx.doi.org/​10.1016/​j.aop.2008.03.003. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491608000420.
https://​/​doi.org/​10.1016/​j.aop.2008.03.003
http://​/​www.sciencedirect.com/​science/​article/​pii/​S0003491608000420

ہے [38] Gerald A. Miller. Non-universal and universal aspects of the large scattering length limit. Physics Letters B, 777: 442–446, 2018-02. 10.1016/​j.physletb.2017.12.063.
https://​/​doi.org/​10.1016/​j.physletb.2017.12.063

ہے [39] Félix Werner and Yvan Castin. General relations for quantum gases in two and three dimensions. II. bosons and mixtures. Physical Review A, 86 (5): 053633, 2012-11. 10.1103/​physreva.86.053633.
https://​/​doi.org/​10.1103/​physreva.86.053633

ہے [40] Félix Werner and Yvan Castin. General relations for quantum gases in two and three dimensions: Two-component fermions. Physical Review A, 86 (1): 013626, 2012-07. 10.1103/​physreva.86.013626.
https://​/​doi.org/​10.1103/​physreva.86.013626

ہے [41] Yaroslav Lutsyshyn. Weakly parametrized jastrow ansatz for a strongly correlated bose system. J. Chem. Phys., 146 (12): 124102, Mar 2017. 10.1063/​1.4978707.
https://​doi.org/​10.1063/​1.4978707

ہے [42] S. A. Vitiello and K. E. Schmidt. Optimization of $^4$He wave functions for the liquid and solid phases. Phys. Rev. B, 46: 5442–5447, Sep 1992. 10.1103/​PhysRevB.46.5442. URL http:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.46.5442.
https://​/​doi.org/​10.1103/​PhysRevB.46.5442

کی طرف سے حوالہ دیا گیا

نہیں لا سکا کراس ریف کا حوالہ دیا گیا ڈیٹا آخری کوشش 2023-12-19 03:48:44 کے دوران: Crossref سے 10.22331/q-2023-12-18-1209 کے لیے حوالہ کردہ ڈیٹا حاصل نہیں کیا جا سکا۔ یہ عام بات ہے اگر DOI حال ہی میں رجسٹر کیا گیا ہو۔ پر SAO/NASA ADS کاموں کے حوالے سے کوئی ڈیٹا نہیں ملا (آخری کوشش 2023-12-19 03:48:44)۔

ٹائم اسٹیمپ:

سے زیادہ کوانٹم جرنل