کوانٹم ڈائنامکس کی گیج تصویر

کوانٹم ڈائنامکس کی گیج تصویر

کیون سلیگل

شعبہ الیکٹریکل اینڈ کمپیوٹر انجینئرنگ، رائس یونیورسٹی، ہیوسٹن، ٹیکساس 77005 USA
ڈیپارٹمنٹ آف فزکس، کیلیفورنیا انسٹی ٹیوٹ آف ٹیکنالوجی، پاساڈینا، کیلیفورنیا 91125، USA
انسٹی ٹیوٹ فار کوانٹم انفارمیشن اینڈ میٹر اور والٹر برک انسٹی ٹیوٹ فار تھیوریٹیکل فزکس، کیلیفورنیا انسٹی ٹیوٹ آف ٹیکنالوجی، پاساڈینا، کیلیفورنیا 91125، USA

اس کاغذ کو دلچسپ لگتا ہے یا اس پر بات کرنا چاہتے ہیں؟ SciRate پر تبصرہ کریں یا چھوڑیں۔.

خلاصہ

Although local Hamiltonians exhibit local time dynamics, this locality is not explicit in the Schrödinger picture in the sense that the wavefunction amplitudes do not obey a local equation of motion. We show that geometric locality can be achieved explicitly in the equations of motion by “gauging” the global unitary invariance of quantum mechanics into a local gauge invariance. That is, expectation values $langle psi|A|psi rangle$ are invariant under a global unitary transformation acting on the wavefunction $|psirangle to U |psirangle$ and operators $A to U A U^dagger$, and we show that it is possible to gauge this global invariance into a local gauge invariance. To do this, we replace the wavefunction with a collection of local wavefunctions $|psi_Jrangle$, one for each patch of space $J$. The collection of spatial patches is chosen to cover the space; e.g. we could choose the patches to be single qubits or nearest-neighbor sites on a lattice. Local wavefunctions associated with neighboring pairs of spatial patches $I$ and $J$ are related to each other by dynamical unitary transformations $U_{IJ}$. The local wavefunctions are local in the sense that their dynamics are local. That is, the equations of motion for the local wavefunctions $|psi_Jrangle$ and connections $U_{IJ}$ are explicitly local in space and only depend on nearby Hamiltonian terms. (The local wavefunctions are many-body wavefunctions and have the same Hilbert space dimension as the usual wavefunction.) We call this picture of quantum dynamics the gauge picture since it exhibits a local gauge invariance. The local dynamics of a single spatial patch is related to the interaction picture, where the interaction Hamiltonian consists of only nearby Hamiltonian terms. We can also generalize the explicit locality to include locality in local charge and energy densities.

The two most famous pictures of quantum dynamics are the Schrodinger and Heisenberg pictures. In Schrodinger’s picture, the wavefunction evolves in time, while in Heisenberg’s picture the wavefunction is constant but the operators evolve in time. In this work, we introduce a new picture of quantum dynamics, the gauge picture, which makes deep connections to locality of information and gauge theory.

Regarding locality: A nice advantage of Heisenberg’s picture is that locality is explicit in the equations of motion. That is, the time evolution of a local operator only depends on the state of nearby local operators. In contrast, locality is not explicit in this way in Schrodinger’s picture, for which there is a single wavefunction whose time dynamics depends on operators everywhere in space. Our new gauge picture modifies Schrodinger’s picture such that we can calculate a “local wavefunction” that carries the same information as Schrodinger’s wavefunction, expect the time dynamics of local wavefunctions in the gauge picture only depends on nearby Hamiltonian terms, which makes locality explicit in the equations of motion. In order to achieve this explicit locality, the gauge picture adds gauge fields to the equations of motion.

Gauge theory establishes a deep connection between a Hamiltonian (or Lagrangian) with a global symmetry and another Hamiltonian where the global symmetry is replaced by a local gauge symmetry via the addition dynamical gauge fields. Interestingly, Schrodinger’s equation $ihbar partial_t |psirangle = H |psirangle$ admits a global unitary invariance given by the transformation $|psirangle to U |psirangle$ and $H to UHU^dagger$. Our work shows that it is also possible to apply gauge theory to this global invariance in Schrodinger’s equation to obtain a new equation of motion, i.e. the gauge picture, with dynamical gauge fields and a local gauge invariance.

► BibTeX ڈیٹا

► حوالہ جات

ہے [1] David Deutsch and Patrick Hayden. “Information flow in entangled quantum systems”. Proceedings of the Royal Society of London Series A 456, 1759 (2000). arXiv:quant-ph/​9906007.
https://​doi.org/​10.1098/​rspa.2000.0585
arXiv:quant-ph/9906007

ہے [2] Michael A. Levin and Xiao-Gang Wen. “String-net condensation: A physical mechanism for topological phases”. Phys. Rev. B 71, 045110 (2005). arXiv:cond-mat/​0404617.
https://​/​doi.org/​10.1103/​PhysRevB.71.045110
arXiv:cond-mat/0404617

ہے [3] T. Senthil, Ashvin Vishwanath, Leon Balents, Subir Sachdev, and Matthew P. A. Fisher. “Deconfined Quantum Critical Points”. Science 303, 1490–1494 (2004). arXiv:cond-mat/​0311326.
https://​doi.org/​10.1126/​science.1091806
arXiv:cond-mat/0311326

ہے [4] Beni Yoshida. “Exotic topological order in fractal spin liquids”. Phys. Rev. B 88, 125122 (2013). arXiv:1302.6248.
https://​/​doi.org/​10.1103/​PhysRevB.88.125122
آر ایکس سی: 1302.6248

ہے [5] Kevin Hartnett. “Matrix multiplication inches closer to mythic goal”. Quanta Magazine (2021). url: https:/​/​www.quantamagazine.org/​mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/​.
https:/​/​www.quantamagazine.org/​mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/​

ہے [6] وولکر سٹراسن۔ "گاؤس کا خاتمہ بہترین نہیں ہے"۔ عددی ریاضی 13، 354–356 (1969)۔
https://​doi.org/​10.1007/​BF02165411

ہے [7] Kevin Slagle. “Quantum Gauge Networks: A New Kind of Tensor Network”. Quantum 7, 1113 (2023). arXiv:2210.12151.
https:/​/​doi.org/​10.22331/​q-2023-09-14-1113
آر ایکس سی: 2210.12151

ہے [8] رومن اورس۔ "ٹینسر نیٹ ورکس کا ایک عملی تعارف: میٹرکس پروڈکٹ اسٹیٹس اور متوقع الجھی ہوئی جوڑی کی حالتیں"۔ طبیعیات کی تاریخ 349، 117–158 (2014)۔ arXiv:1306.2164۔
https://​/​doi.org/​10.1016/​j.aop.2014.06.013
آر ایکس سی: 1306.2164

ہے [9] مائیکل پی زیلیٹل اور فرینک پولمن۔ "Isometric Tensor نیٹ ورک دو جہتوں میں ریاستیں"۔ طبیعیات Rev. Lett. 124، 037201 (2020)۔ arXiv:1902.05100۔
https://​/​doi.org/​10.1103/​PhysRevLett.124.037201
آر ایکس سی: 1902.05100

ہے [10] Steven Weinberg. “Testing quantum mechanics”. Annals of Physics 194, 336–386 (1989).
https:/​/​doi.org/​10.1016/​0003-4916(89)90276-5

ہے [11] N. Gisin. “Weinberg’s non-linear quantum mechanics and supraluminal communications”. Physics Letters A 143, 1–2 (1990).
https:/​/​doi.org/​10.1016/​0375-9601(90)90786-N

ہے [12] Joseph Polchinski. “Weinberg’s nonlinear quantum mechanics and the einstein-podolsky-rosen paradox”. Phys. Rev. Lett. 66, 397–400 (1991).
https://​/​doi.org/​10.1103/​PhysRevLett.66.397

ہے [13] Kevin Slagle. “Testing Quantum Mechanics using Noisy Quantum Computers” (2021). arXiv:2108.02201.
آر ایکس سی: 2108.02201

ہے [14] Brian Swingle. “Unscrambling the physics of out-of-time-order correlators”. Nature Physics 14, 988–990 (2018).
https:/​/​doi.org/​10.1038/​s41567-018-0295-5

ہے [15] Ignacio García-Mata, Rodolfo A. Jalabert, and Diego A. Wisniacki. “Out-of-time-order correlators and quantum chaos” (2022). arXiv:2209.07965.
آر ایکس سی: 2209.07965

ہے [16] Rahul Nandkishore and David A. Huse. “Many-Body Localization and Thermalization in Quantum Statistical Mechanics”. Annual Review of Condensed Matter Physics 6, 15–38 (2015). arXiv:1404.0686.
https://​doi.org/​10.1146/annurev-conmatphys-031214-014726
آر ایکس سی: 1404.0686

ہے [17] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. “Colloquium: Many-body localization, thermalization, and entanglement”. Reviews of Modern Physics 91, 021001 (2019). arXiv:1804.11065.
https://​/​doi.org/​10.1103/​RevModPhys.91.021001
آر ایکس سی: 1804.11065

ہے [18] Bruno Nachtergaele and Robert Sims. “Much Ado About Something: Why Lieb-Robinson bounds are useful” (2011). arXiv:1102.0835.
آر ایکس سی: 1102.0835

ہے [19] Daniel A. Roberts and Brian Swingle. “Lieb-robinson bound and the butterfly effect in quantum field theories”. Phys. Rev. Lett. 117, 091602 (2016). arXiv:1603.09298.
https://​/​doi.org/​10.1103/​PhysRevLett.117.091602
آر ایکس سی: 1603.09298

ہے [20] Zhiyuan Wang and Kaden R.A. Hazzard. “Tightening the lieb-robinson bound in locally interacting systems”. PRX Quantum 1, 010303 (2020). arXiv:1908.03997.
https://​/​doi.org/​10.1103/​PRXQuantum.1.010303
آر ایکس سی: 1908.03997

کی طرف سے حوالہ دیا گیا

[1] Sayak Guha Roy and Kevin Slagle, “Interpolating between the gauge and Schrödinger pictures of quantum dynamics”, SciPost Physics Core 6 4, 081 (2023).

[2] Kevin Slagle, “Quantum Gauge Networks: A New Kind of Tensor Network”, کوانٹم 7, 1113 (2023).

مذکورہ بالا اقتباسات سے ہیں۔ SAO/NASA ADS (آخری بار کامیابی کے ساتھ 2024-03-22 22:55:39)۔ فہرست نامکمل ہو سکتی ہے کیونکہ تمام ناشرین مناسب اور مکمل حوالہ ڈیٹا فراہم نہیں کرتے ہیں۔

On Crossref کی طرف سے پیش خدمت کاموں کے حوالے سے کوئی ڈیٹا نہیں ملا (آخری کوشش 2024-03-22 22:55:38)۔

ٹائم اسٹیمپ:

سے زیادہ کوانٹم جرنل